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ABSTRACT OF DISSERTATION

A CONTINUOUS TIME STORAGE MODEL WITH MARKOV NET INPUTS

A model for a dam is considered wherein the net input rate (input

minus output rate) follows a finite Markov chain in continuous time,

Xt . and the dam contents process, Ct , is the integral of the Markov

chain. The dam is then modelled with the bivariate Markov process

(Xt,Ct), of which three variations are considered. These are the

doubly-infinite dam with no top or bottom, the semi-infinite dam with

only one boundary, and the finite dam with both a top and a bottom.

Some of the analysis is performed under the most general situation In

wtiich Xt  is defined on m states and has an arbitrary generator,

while other analysis is performed under the restricted case when m = 2.

For the doubly-infinite dam, the first and second moment functions

and the maximum and minimum variables are studied. The expected range

function is explicitly derived in a special two-state case. Also in

the two-state case, weak convergence to the Wiener process is established

in 0(0,-), from which the asymptotic distribution of the range is

obtained.

For the semi-infinite and finite dams, techniques of invariance

used in the physical sciences are introduced to study first passage times.

mU These techniques are used to derive the distribution and moments of the

wet period of the dam in special cases, and the limiting probabilities

of emptiness and overflow.

Nelson Pacheco-SantiagoUm Statistics Department
Colorado State University
Fort Collins, Colorado 80523
Spring, 1979
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I CHAPTER I

INTRODUCTION

1.1 Preliminaries

I The field of storage theory has been of long-standing interest

in the engineering community, and has in the last few decades become

m one of the most energetically pursued fields in applied probability.

Although the origin of storage theory lies in the now classical study

of sizing of water reservoirs by hydrologists, the recent developments

j have transcended these original applications. The interest of

probabilists and statisticians in the interesting mathematical and

j statistical problems which have arisen from a study of storage problems

have in fact led to a new branch in hydrology known as stochastic

hydrology. Many of the techniques developed by the stochastic

hydrologists have in turn become of independent interest, so that at

present this theory has developed on its own merits as a mathematical

construct, rather than being strictly tied to the classical study of

reservoir sizing. Many natural linkages have also been established

between storage theory and other areas in stochastic processes, among

them queuing theory and the theory of stationary processes.

As a result of the extensiveness of the field, it is necessary

7for contemporary investigators to narrow substantially the field of

inquiry to specific types of models and specific aspects of those

T
models This investigation studies certain problems associated with

a continuous-time storage model which has a Markovian structure.

IBefore specifically addressing the problems studied in this
I

I ,. ,.,u '" -.. ..



I2

I investigation, however, we will give a, necessarily brief, overview

of the history and categorizations of storage theory.

1.2 History and Literature Review

The classic object of storage theory is the study of a water

I reservoir, or dam, which is fed by some source of water such as a

river. The size of the dam to be constructed is, of course, dependent L

on the amount of water which can be expected from the supply source.

The size of the dam should be such that the probability of occurrence

I of either overflow or emptiness is minimized.

1The classical analysis of this problem specified certain

deterministic functions for both the amount of water input and the

1amount of water drawn off, and from this the optimal size of the

reservoir was determined. This type of analysis dates at least as

I far back as 1883, when it was treated by W. Rippl.

1 The stochastic nature of the problem was first addressed by A.

Hazen (1914) and later by C. E. Sudler (1927). These two individuals

I considered the data representing river runoffs as having an associated

uncertainty. Although their methods of analysis were crude by today's

standards, it is both to their credit and an indication of the

interesting nature of the problems in storage theory that they

I developed the techniques of using "probability paper" and data

simulation, respectively, in their studies.

H. E. Hurst [26]* in 1951 studied the problem of determining

j the reservoir storage required on a given stream to guarantee a given

draft by considering the cumulative sums of the departure of the

S*Numbers in brackets refer to bibliography.

!
I
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annual totals from the mean annual total discharge. These cumulative

* departures can be thought of as the contents of a hypothetical dam

with no top or bottom; or the unrestricted contents, measured from some

I point representing the mean contents.

Under this model, the level of the dam in year n , Cn ,is

the result of n net yearly inputs (input minus output) X1, X2, ...n

Xn Thus we have Cn - Xi , so that the contents become the well-

studied partial sums process. The functional studied by Hurst for

1 this model is the range up to time n, Rn given by

max Ci  min CiII Rn = 1 < i < n I < i < n

Hurst and subsequent investigators used Rn for initial sizing

estimates by concluding that the range up to time n gives an

indication of the size of a dam which would have been required to

contain that amount of water without either overflowing or becoming

Iempty. Hurst also considered certain other variations on the range
as defined above, such as an adjusted range obtained by subtracting

off the average up to time n . The basic idea for the sizing of the

1reservoir, however, is the same.
If the interval size in this discrete-time model is sufficiently

1 large (yearly, for example), then it may be reasonable to suppose that

the summands Xi are stochastically independent. This was the first

model studied, and in this case the unrestricted contents process

becomes a random walk.

The significance of the Hurst paper lies in the extremely long

records of data which he compiled, some extending up to 2000 years, as

was the case for the records on the Nile river. From these records heI

I_
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drew a conclusion on the rate of growth of the range which contra-

dicted the random walk model described above. For a random walk

model it is well known that the expected value of the range grows as

n . However, Hurst found in his analysis of the data that all of

these quantities showed a surprisingly similar exponent of 0.69 to

0.80 with a mean of .72. This is indeed much too large to be explained

I by this model and has been the object of much subsequent study.

This anomaly, now known as the Hurst phenomenon, drew the

Jattention of W. Feller [21] who in 1951 derived the asymptotic

distribution and moments of the range for the iid case by appealing

Ito approximations by Brownian motion. Feller mentioned that the

Hurst phenomenon might be explained by assuming that the summands

are not independent, although as noted later by P. Moran [33], the

dependence would have to be strange indeed, for any reasonable model

will in fact have an asymptotic growth of 0.5. Moran then commented

that the Hurst behavior may be pre-asymptotic in nature, and that the

records which Hurst studied were not long enough to reach their

asymptotic values.

Subsequently Moran in 1964 [34] obtained the mean range when the

inputs were iid but with a symmetric stable distribution with

parameter y and found that the mean range varied as nI/y

This, then, represents the two main theories advanced to the

present time to explain the Hurst phenomenon; non-iid pre-asymptotic

behavior, and iid heavy-tailed net inputs as represented by the stable

inputs.

The heavy tails explanation is not as appealing to many applied

hydrologists because of conceptual difficulties involved with an input

L
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which has an infinite variance. However, it is the opinion of this

investigator that the pre-asymptotic theory is burdened by the fact

that none of the Hurst data seemed asymptotic to n0 5  In fact, all of

Im the series which he examined showed remarkably consistent large

growth rates for as far back as he could find data.

Although we will not concern ourselves in great detail with the

Hurst behavior, we will demonstrate that the continuous-time model

which we investigate does in fact exhibit the Hurst behavior pre-

asymptotically for moderate values of time.

The more modern studies in storage theory began with Moran in a

I series of papers from 1954 - 1957 in which he studied dams with a

l variety of inputs and operational policies. In his analysis, Moran

considered the finite dam with both a top and bottom and performed

I the analysis in both discrete time and continuous time.

In the continuous time approach, Moran assumed that the input

Iprocess was an additive homogeneous process; that is, a process with
stationary independent increments. This means that the input incre-

ments, say C(t2 ) - C(t1 ) in non-overlapping intervals (t1,t2 ) are

j independent and have a distribution which depends only on t2 - tj

This is a straight analog of the situation in discrete time when the

successive inputs are considered to be independent. Although Moran's

continuous time analysis is a more convenient model for a real dam in

I that one is no longer limited to studying the inputs only at certain

time epochs, it nevertheless has the fault that as the time intervals

become shorter, the assumption of independence in successive intervals

becomes less realistic. Among other contributors to the model is

!
11
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J. Gani £23], who considered the input process to be Poisson with a

unit release rate.

E. Lloyd [30] in 1963 was the first to consider a dam, in

discrete time, where the successive inputs were dependent. He

supposed that the input Xn in successive time intervals (n, n+l)

l followed a Markov chain and the release rate in each interval was a

constant, say r . The dam contents at time n are then given by

Cn = min(a, max(O, Cn-i + Xn-r))

where a is the capacity of the dam and 0 < a.

This model, which has since become known as the Lloyd dam,

received considerable attention in the discrete time case in both this

version and the semi-infinite topless version where a = m Notable

contributions to this study include Ali Khan and Gani £1], who studied

jthe time to first emptiness for the semi-infinite dam, and Ali Khan

[2], who considered the finite case. In all of these studies the

Markov chain has a finite state space. Brockwell and Gani [11] con-

sidered the time to first emptiness for the case in which the Markov

chain has the non-negative integers as state space.

As far as range analysis for the unrestricted contents with

dependence is concerned, F. Gomide [24] treated the case of Markovian

inputs in discrete time, and B. Troutman [41] studied limiting dis-

tributions for the discrete time process with Markovian and certain

stationary inputs using a weak convergence approach.

If the continuous time model of a storage system is a better

approximation than the corresponding discrete time model, and the

Lloyd model is a better approximation than the independent input model,

then a continuous time version of the Lloyd dam offers a much closer

-A
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correspondence between theory and a realistic storage system.

Relatively few studies have been done on this model, which is the

subject of this investigation. Most notable of the published results

I have been those by McNeil [32] and Brockwell [12]. McNeil studied a

dam in continuous time in which the input process follows a two-state

m Markov chain with one of the states being zero. When the input

process is in the zero state, the dam is being drained, and he

supposes that there is a general measurable function of the dam level,

m say g(x), which represents the demand rate. Although he sets up the

problem in this generality, he is able to obtain explicit results

l only for the cases when g(x) is constant and g(x) is exponential.

McNeil is able to derive the limiting distribution of the contents and

I first passage times.

I Brockwell considers the case in which the net input rate follows

a general Markov chain with a finite state space, and by setting up

Kolmoyorov-type equations is able to derive the limiting distribution

of the contents and first times to emptiness and overflow.

1.3 Objectives and General Approach

The model considered in this investigation is the one formulated

by Brockwell where the net input, say Xt , is a Markov chain in

I continuous time defined on a finite state space (i,...,1m }  In

analogy with discrete-time models, the dam content at time t , Ct

is given by the integral of the net input process up to time t

I Hence (for a doubly infinite dam)
t

- Ct - Xudu, t>O 

10
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This formulation is the continous-time analog of the unrestricted

contents process described earlier. To contrast it with the next model

which we consider, we will refer to the bivariate process (Xt,Ct) as

I the doubly-infinite dam. When we refer to the marginal process Ct

the term "unrestricted contents" will also be used.

I If we now refine this model by assuming that the contents must be

I non-negative then = f X*du, t > 0 where0{ m u T -

X. =0 if CU a 0 and Xu < 0
u (Xu  otherwise

! T
and we will refer to the bivariate process (Xt,Ct) in this context as

I the semi-infinite dam. The terminology topless dam has also been used

for models of this type. A symmetric variation of this is to restrict

the top but not the bottom, so that, if a is the highest level which

the contents can attain, then B tSo uX*du, t > 0 , where

SX* 0 i Cu a and X > 0

UXuotherwise.

We will refer to this variation of the semi-infinite dam as the

I bottomless dam.

u mThe third model which we consider is one for which the contents

must be non-negative and can not exceed a certain level, say a. In

this case the contents are given by
F t

C t Xdu , t>0 , where

X uif C F e[,a) and X u> 0'1 = ~X i oer2 (~al and X< 0, m ,0 otherwise.

* F
In this case we will refer to the bivariate process (XtCt} as the

finite dam.

mai
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Now, in simple terms a Markov process is one in which the

distribution of the future, given the present, is independent of the

past. The Ct  process does not meet the requirement and is not, in

fact, Markov. This is due to the fact that the present only conveys

information on the level of the dam contents, and not on the rate at

which the contents are changing. Obviously, adding this information

will affect the future distribution of the contents. The bivariate

process (Xt, Ct) , however, does contain the information on the rate

Iof change of the contents and is a bivariate Markov process. The

state space of such a process is discontinuous i: nature, since it

evolves on a set of disjoint lines as shown in Figure 1.1 for the

finite dam. The solid dots at the right boundaries for the positive

rates and the left boundaries for the negative rates represent the

fact that when the process hits these points it remains there for a

random time. A solid dot on the right boundary, for example,

represents an overflow condition while a solid dot on the left

boundary represents an emptiness condition. Markov processes with

discontinuous state spaces of this type were studied by Moyal [35].

In Chapter II we present a brief review of background material

which is prerequisite to the development of later chapters. Although

none of the material is new, the results which we quote here are

scattered through various sources and so we include it here in a

unified manner as an aid to the reader.

In Chapter III we study the first and second moment functions of

the marginal processes for the doubly infinite dam. These functions

are useful for fitting the model and as an aid in the initial estimates

of parameters. In this chapter we prove a generalization of a result

I.
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I Figure 1.1 Sample paths and state space of (XtCt).
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reported by McNeil [32] that the autocorrelation function for the

marginal contents process does not depend on the states of the

Markov chain in the two-state case.

In Chapter IV we begin with the analysis of the range for the

doubly infinite dam. The relevance of this to dam sizing studies

1 has been discussed earlier. Although the range variable has been

studied extensively in discrete time, this is the first analysis in

continuous time. We first study the joint distribution of the

maximum and minimum variables by finding its Laplace transform. We

do this for the most general situations in which the Markov chain is

defined on m states with an arbitrary generator. We call this

the General Case. An inversion of this transform would provide the

joint distribution from which the distribution of the range could, in

principle, be obtained. The inverse, however, is not obtainable in a

simple analytic form and although a numerical procedure could be

used, we choose to restrict ourselves to an analytic rather than

numerical analysis of this problem. By restricting ourselves to

special cases, we are able to obtain exact expressions for the expected

range for all t , and an asymptotic distribution for the range. The

special cases which we consider are those in which the Markov chain

is defined on two states, which we call the Two-State Case and the

subcase for which the two states ul and u2 , and the two holding

time parameters, x and p , have the relation P, = -uz and x = p

1 We call this the Symmetric Case.

We are able to derive an explicit solution for the expected range

I function, ERt , in the symmetric case. We do this by first obtaining

the marginal distributions of the maximum and minimum for the two-stateI
I
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case. The expected range can be expressed, using the linearity of

I expectation, as the difference in expected value of the maximum and

minimum. We obtain the expected range function in its Laplace

I transformed version. Fortunately, the Laplace transform can be expanded

in a neighborhood of infinity and the resulting series can be inverted

term-by-term as a confluent hypergeometric series. The properties

of the confluent hypergeometric series have been thoroughly studied

(see, e.g., Buckholz [15]). Tabled values are available in Jahnke,

Emde, and Ldsch [27].

For illustrative purposes, we chose a particular subcase and

performed a precise numerical calculation of ERt which we include as

a graph for 0 < t < 10 in Figure 4.1. For numerical calculation

purposes, Kummer's first formula (Buchholz) was quite useful, for it

allowed calculation in positive terms rather than in terms of a slowly

converging alternating series.

I Examination of the graph of ERt shows remarkably close behavior

to that reported by Hurst for moderate values of t . Therefore we

include in this chapter a short note on the Hurst phenomenon. Another

aspect which is evident from the graph is the extremely rapid con-

vergence of ER to its asymptotic value of/ t1/2. This indicates

J that for moderate values of t , as small as 5, very good approxima-

tions can be obtained from asymptotic results. In conclusion, we

I discuss the order of convergence by performing an asymptotic expansion

I of the Laplace transform of ERt in a neighborhood of zero, as

discussed in Doetsch (19].

In Chapter V we discuss what we call, in general, invariance

methods as applied to the analysis of the semi-infinite and the finite
.I
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I dams. The invariance techniques to which we refer are those developed

I mby V. A. Ambarzumian [3] and Chandrasekhar [16] in the 1940's for the

study of radiative transfer in stellar atmospheres, and subsequently

refined by Bellman et at. [4-7] in the late 1950's, and early 1960's

in the field of Neutron Transport Theory. Invariance techniques are

I very closely related to the idea of regeneration in probability theory.

In this chapter we present a detailed discussion of the principle of

invariance as applicable to our model.

The principle of invariance presented the astrophysicists with

a powerful tool for the solution of certain physical problems which

I had been at best laboriously solva u ig more classical techniques.

The same held true in the applications to Neutron Transport Theory.

In studying the problems of f;rst passage times in the storage

model considered herein, a strong relation between all of these

problems becomes evident. This is particularly true in the study of

the wet period, or the sojourn time of the process from the time that

it leaves the zero state until the time that it returns to the zero

i state. The classical formulation for the distribution ofthis variable

involves setting up Kolmogorov equations, which lead to a two-point

boundary value problem in the finite dam. The invariance techniques,

l however, enable us to solve directly for the transform of this

distribution, leading to a system of algebraic equations in the case of

Ithe semi-infinite dam, and to an initial value problem in the case of

the finite dam. In the symmetric case, we are able to invert the trans-

form and thus obtain the distribution of the wet period. More

generally, we are able to solve for the expected value of the wet

period in the two-state case, which in turn leads us to finding
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necessary and sufficient conditions for recurrence for the semi-

infinite dam.

We finish this chapter by using a renewal argument to calculate

I the limiting probability of emptiness for the topless and finite dams,

i and the limiting probability of overflow for the bottomless dam.

In Chapter VI we establish a Functional Central Limit Theorem

for the doubly infinite dam on two states. We prove that the process

C(nt)//r converges weakly in the zero drift case to the Wiener process

I as n goes to infinity, that is, C(n-)/rn- >W(3.) on D[O,o) where

B is a function of the four parameters. We therefore have the approxi-

mation PCC(n.)/n eB) : P[W(O-)eB] , for BeB , the Borel field induced

I by the open sets relative to the D(O,) metric. This is a sub-

stantial improvement on the results of Fukushima and Hitsuda [22] and

f Pinsky [38], who were only able to show convergence of the marginal

distributions.

We establish weak convergence by the method of establishing an

f embedded partial sum process. The difficulty here is that a direct

appeal to Donsker's Theorem is not possible because the sum contains a

renewal counting function as an upper index. Fortunately, we are able

to overcome this difficulty by a technique similar to that used by

J Resnick and Durrett [20] who consider weak convergence of sums with

random indices.

As an application of the weak convergence which we establish, we

I use the continuous mapping theorem to establish the asymptotic

distribution of the range, since the corresponding result for the

Wiener process was established by Feller [21].

A
iii
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I Chapter VII presents a summary of the results and recommendations

for the further study of these problems.

I
I
I
I
I
I

I I
ii
I

I I
II

I
II
I
1
I

:1



I
I

I CHAPTER II

BACKGROUND MATERIAL

I 2.1 Markov Processes

In this chapter we present a very brief summary of definitions

and results which will be needed in subsequent chapters. Proofs are

I not provided for most theorems, since they can be found in any text

containing Markov processes, such as Cinlar £18] or Chung [17].

!! Def. 2.1: The real-valued stochastic process {Xt , t > O} is a

I continuous-time Markov Process iff Vn and Vt < t2 <... < t

*! ' < tn+l1• (l

P[Xtn+l BIX -x B a.s. forn+ n] •..,tn+ l  n

B -8 (R), the linear Borel sets.

This is often stated as the future, conditioned on the present, being

independent of the past. We remark that in the above definition X

may be a vector, which is in fact the case that we will consider later.

Def. 2.2: A function p from R+ xR xB(R) into [O,l is called a

transiti:qn probability function (t0f) iff

(1) p(t,x,-) is a probability measure on S(R) Vit,x

(2) For each BeB(R), p(.,.,B) is product measurable with

respect to B(R+) x B(R)

(3) P satisfies the Chapman-Kolmogorov relation:

. cB(R), s,t R+,

p(t+s,x,B) = f p(s,x,dy)p(t,y,B)
ycR

- 16

'IL
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A tpf gives the probability of transitioning from some starting

position to some Borel set in some fixed time.

Def. 2.3: We define the Markov Process to have stationary transition

I probabilities P(.,.,-.) iff

I P[Xt+s eBIXt] = P(s, Xt, B) a.s.

I To construct a Markov Process with stationary transition pro-

babilities all that is needed is the tpf and an initial distribution

Imeasure 7r(.) on 8(R) as follows from the following theorem.

ITheorem 2.1: Given a transition function p , define the following

finite-dimensional distribution functions for 0 = to < ...< tn

F t,...,t (Box...xBn)

= f o.:. .f ir(dxo)P(t-to,xodxl)p(t2-tl,xl,dx2 )

• -P(tn-tn-,Xn.,dxn)

I where 1 is some initial probability measure on B(R). Then

{Fto, } is a consistent family and hence by the Kolmogorov
--,n

Consistency Theorem we are guaranteed a process {Xt} on

= RI0'-). {Xt} has stationary transition probabilities and is

a Markov process.

For convenience, we will label P the measure constructed

on (R[O'-), B(RO,'i)) from n and p(t,x,B) . When w(B)= 6x(6)

then we write P= P
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2.2 Strong Markov Processes

* Suppose the Markov process is defined on a background probability

space (0,8,P). Suppose that on this probability space we have an

increasing continuum of Borel fields Bt, t > 0 , so that to Bs

if s > t.

i Def. 2.4: A random variable T:t[-*{O,] is a stopping time with

respect to {Bt } iff (T - t) E Bt -t The pre-T

j sigma field is defined by: B= {AcBIA(T c t)eB t }.

Intuitively, IT encompasses all of the information obtained by

observing the process up until time T . It can be easily

checked that BT is indeed a Borel field. The previous

definitions have been independent of the Markov process. We

now suppose that (Bt  is the set of Borel fields generated by

the Markov process, i.e.,

Bt = B(Xs, s < t), where B(Xs, s < t) is

the smallest Borel field generated by the random variables

Xs, s < t}. With this in mind, we will define a strong

Markov process:

Def. 2.5: A Markov process {Xt} is said to be strong Markov if V-

stopping times T and xR, V-AcB (RLO'J), P_[X('+T)AIB =

Px(T)[x(.)cA] as Px"
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Thus we see that a strong Markov process is one for which the

Markov property holds for stopping times.

2.3 Finite State Markov Chains

When the state space is a subset J of the integers, we call the

process a Markov Chain and we can package the tpf into a convenient

matrix form, known as the transition matrix, defined as follows:

Def. 2.6: A function P(t) = (Pij(t))i,j j is called a transition

matrix if

(i) P ij(t) 10 , Pij (t) < I t > 0

(ii) Pi (t) is measurable

(iii) The Chapman-Kolmogorov relation holds:

P(t+s) = P(t) P(s)

If in (i) we have Pij(t) < 1 we call P substochastic. If,

moreover,

(iv) P(t) - I as t\ 0 we call P standard.

The subsequent discussion will only involve finite state,

standard, stochastic transition matrices.

We have seen that given an initial distribution and a transition

matrix, the Markov chain is probabilistically determined in the sense

that all of the finite dimensional distributions are determined. Since

this is a determining class (Billingsley [9]), then two different

Markov chains with the same initial distributions and transition

matrices are probabilistically indistinguishable.

From the statement of our storage problem, however, it will be more

natural to specify the infinitesimal transition probabilities, that is,

Pij (6t) for at 0 . Specification of these infinitesimal

- .. . . ... . ,. .. • .,, , , . : . ... . .
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probabilities lead, in the finite state space case, to a direct

l solution for the transition matrix which, along with the initial

distribution, will specify the Markov chain.

Def. 2.7: The waiting time random variable Wt  is defined by

Wt = inf {s > 01 X t+s tX t  , and Wt = . if the set is empty.

wt  is the time spent in state xt before jumping to a

different state.

I Def. 2.8: The jump times {TiliT 0 are defined by

TIT = wO

i 
Tn+l = Tn + WTn

Def. 2.9: The sequence of states visited, {X n}n 0 are defined as

Xn = X(T n)

I {Xn } is also known as the embedded jump chain.

We now state some well-known results.

Theorem 2.2: The Markov property implies that iEJ 3irl[,a- ) 3.
-I .iu1

PW t > u{X t = i] = e , u >0

Hence the holding times are exponential with a parameter dependent

on the state. The following holds for joint distributions:

I Theorem 2.3: Vn, je J, u > 0

I P Xn ' = j, Tn I  - Tn > u I Xo, .. X n To, - ,Tn] = 
I e n

l where r is a stochastic matrix % IT 0 , i I = I . By

taking conditional expectations of both sides of the equation with

I respect to X0 , ... , Xn we can show the following:

I
.*
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In " Xxj_

Theorem 2.4: P[T. - T .> u, j=l,..., nlX o,..., X 1f e

Hence the times between jumps {TjTj- l}j<n are conditionally

independent and exponentially distributed.

As a corollary of this theorem, note that if the sequence of states

Jvisited is deterministic, then the times between jumps are uncondition-
ally independent.

By conditioning on the time of the first jump, we obtain the

Kolmogorov Backward Equation:

Theorem 2.5: i,j,t > 0

-Xit t -Ai s

P i(t) =6ij e + fXie Z ikPkj(t-s)ds
o kEJ

k~j

By conditioning on the time of the last jump before t , we obtain

the Kolmogorov Forward Equation:

Theorem 2.6: i,j, t > 0
-Xi t  t -)Lj (t-s)

Pij(t) = 6ije + f Z~ Pik(s)xkdswkj e

k~j

Although the forward equation can lead to difficulties with

explosive processes, that is, processes for which P[XtcJ ] < I for

some t , finite state Markov chains are non-explosive and if the jump

matrix is irreducible both the forward and backward equation possess

the same unique solution.

I
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Theorem 2.7: Vi,j,Pi. (t) has a continuous derivative and

I P'(0) = Q

P-(t) = QP(t)

where Q . = i i j

from which,

IP(t) eQt IZJ , i=O

Def. 2.10: The matrix Q is called the generator of the Markov chain.

The parameters x| give the mean holding times in the ith state and

I ij gives the probability of a jump from state i to state j in the

jump chain.

We note that any matrix Q such that Q l = 0 , qij 2 0, ijj, and

qi < 0 is a generator for a Markov chain.

In the subsequent analysis, we will proceed by starting with a

Igenerator for the Markov chain net input process Xt . This generator

will be specified by the infinitesimal transition probabilities. We

Iwill then establish results for the contents process which is derived
g from the net input process. We will maintain as much generality as

possible throughout. The most general setting possible is that on an

arbitrary number of states with a generator as described above. We

will refer to this as the General Case. In many instances this is

I much too general to obtain explicit results, and so we restrict our-

selves to a Markov chain on two states, which we call the Two-State Case.

I!
!
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In this case we take as a 23

we generator

Q

As we discussed earlier, the generator by itself does not specify

the Markov chain; we also need the initial distribution w . In many

cases we will assume that r is the stationary distribution, which we

l discuss next.

2.3.1 Stationary Distribution

From the Markov property it follows that if

I wi(t) P[Xtzi] and

I then W'(t) " (O)P(t)

I Now, suppose that there is a time-independent solution, say wt

I to
x'= x P(t)

m then if (O)=lr, it is clear that n(t)= r f t > 0.

In this case the Markov chain is in probabilistic equilibrium which

m we call (strict) stationarity, and it is known as the stationary

m distribution.

The condition for existence of a solution of the system above can

I be related to the generator by the following:

I Theorem 2.8: x'P(t) = xYvt iff xOQ = 0 . If Xn  is irredu-

cible, the solution is unique.

Hence the stationary distribution is the normalized left eigen-

vector corresponding to the zero eigenvalue, whose right eigenvector

I
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Now, suppose that lrn P.j (t) = 7#. < -. independent of i T hen,
t-ow-I in matrix notation,

lim P(t) = lw'~t-O"

and lim v(t) = n'(0) lim P(t) = '(Q) lw=

We call n the limiting distribution of the chain, and it is free

of the initial distribution. We will show in the next section that for

J our case the limiting distribution is identical with the stationary

distribution.

Of interest is the rate of convergence to the limiting distribution

for the net input process. We discuss this next.

2.3.2 Rate of Convergence to the Limiting Distribution

The computation of limiting distributions and results on the

rate of convergence are most easily handled by algebraic methods. An

excellent reference for algebraic methods in Markov chains is Karlin

[28]. The basic tool used is the spectral decomposition theorem for

matrices.

Theorem 2.9: If Q is an nxn matrix with distinct eigenvalues

i=l,...,n and right eigenvectors ti . i=l,...,n then Q

admits the spectral decomposition

Q=TAT-

where T a (ti,...,tn) and A = diag (e).

J Now, the time-dependent transition matrix was given by

~~P(t) =e~t

Substituting Q = TAT- into the above, we obtainassuming distinct a,'s,

eQt + TAi't = I + T(e't-I)T " I

11=1

jl= TeA tT -

I- .
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I
I where eAt = diag (ait)

Hence

P(t) = Te"tT-'

Now, writing T"1  rl,I
rn/

we can write the above as

n eit

P(t) = r e 

and, since the stationary distribution, r , is the left eigenvector of Q

corresponding to the zero eigenvalue and right eigenvector 1, we have

I n eit

P(t) = I w- + I t i  rf e

i=2

We now prove the following lemma concerning the nonzero eigenvalues of

j a generator.

Lemma 2.1: The non-zero eigenvalues of a generator have negative real

- (part.

Proof: If 8 is an eigenvalue then e satisfies Qx = x

for some x # 0 . This says that if Qi= I qij
isj

n

j E Ix i , x=-,..., n

or - Qixi + Z qi j xj = ex i

so that qi~x. - (e+Qi)xij#i I

Now, let xk = jlI

I



!
26

Then, for i=k we get

(e+Qk) = jk qxwth<

So then Is + QkI < [ qkjl _ qkjI =Qk

j#k k jfk

I Hence je+ Q -k or -(-Qk) -_ k

This says geometrically that e lies within a circle

centered at -Qk with radius Qk on the complex

plane, so that Re(e) < 0

With the help of the lemma we see that

P(t) = If" + tirl e ilw,

~- i=2>

with the rate of convergence being exponential and governed by the

largest non-zero eigenvalue.

Now, if wr(o) = w , then*1 Qt i
n'(t) - rP(t) =w'e Q'=

-
i=0 i!

I. i-i tia ff, 1 +1= WQQ i W" 'I + 0 =

since wo Q = 0

So we see that the limiting distribution w satisfies x'P(t) =x

and, by uniqueness of solutions in the irreducible case, coincides

I with the stationary distribution.

1
I
i
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2.4 Weak ConvergenceWe present here a brief discussion of the theory of weak convergence

i which will be used subsequently. For a thorough treatment of the subject,

the book by Billingsley [9] is recommended.

We begin with a complete separable metric space (S,p) and we

suppose that S is the Borel a-field generated by the open sets under

m p. The concept of weak convergence involves convergence of sequences

of measures defined on the metric space as follows:

Def. 2.11: Suppose iP I are probability measures defined on (S,p).
nn=O

I We say that {Pn } converges weakly to Po , written Pn- P iff

f fd Pn f fd Po

for all bounded continuous real valued functions on S

Weak convergence of stochastic processes is defined by considering

the weak convergence of the induced measures. To do this, it is of

benefit to consider random elements.

m Def. 2.12: X is a random element of (S,S) if 9 a probability space

(R,8,P) such that X is a measurable map from (a,B,P) into

1With this definition in mind, we can define weak convergence of
random elements by

Def. 2.13: If {XnI is a sequence of random elements on (S,S), then
Xn converges weakly to X iff P-X1  -PX , where PoX'

n0n 0 n

represents the probability measure on (S,S) induced by Xn

This type of framework serves for any dimensionality. For example,

if (S,p) = (R, Ix-yl), then a random element is a random variable in

I
I
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one dimension. If (S,p) = (R , [ I (x i'yi) ] ), then a random element

is a random vector. For our analysis of weak convergence of the contents

process, we will work in the space S = D[0,-) , the space of right-

continuous functions on (0,-) with finite left limits. Before

discussing the D[O,-) metric, we will discuss the simpler space

D[0,1] . Under the uniform convergence metric,

I p*(x,y) - sup x(t)-y(t)f

0<t<1

the space D[0,l] is not separable. A metric under which D[0,l] is

separable is the Skorohod metric,

p(xy) = inf p*(x,e)Vp*(x,y.A)

I AeA

where A = {x:[O,l) - [0,1] I X(0) = 0 , x(l) = 1, x is continuous,

I one to one, onto, and strictly increasing I and e is the identity

map. Hence A comprises the set of time transformation of [0,1].

The idea behind the Skorohod metric is to make functions which are

'close' after a sufficiently small time transformation also close in

the metric. Unfortunately, D[0,1] is not complete under the Skorohod

metric. However, Billingsley has modified the Skorohod metric into an

equivalent metric under which D[O,l) is complete. For details see

Billingsley, pg. 112-113. Clearly, the same development holds on

0(0,k] for any k .

For processes on D[O,-) , we desire to define a metric so that

1 random elements Xn will converge weakly, Xn ->Xo  in D(0,-) iff

Xn ->Xo  in D[O,k] for any k .

n To accomplish this, let Ak be the set of homeomorphisms from

[O,k] onto [O,k] with the properties described earlier for A .
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II
For x,yeDO[O,k], define the Skorohod metric

dk(xy) - inf p* (x,e) Vp* (x,y.x)

I XEAk k k

where p*k is the uniform metric on [O,k].

Let dk be the Billingsley modification to dk which makes

(D[O,kJdk) a complete separable metric space. Now let D = Dkk=l
so that if xcD = then x = (x,, x2, ...) where xkED k * For x,ycD=

I define

CO d k (x k~ y k )
d(x~y) k=l d

Then (D**d ) is a complete separable metric space. Now define the

1 projection maps

rk:D[O,**)+ Dk

1 by rk(x(t))= x(t), 0 < t k , and let :D[O,o)-4O be defined by

I(x) = {rk(x), k > l}.

Then *(D) is a closed subspace of D" and (*(D), d-) is a

complete separable metric space. To finish, define d on DCO,o) by

1 d(x,y) = d=(x), (y)).

This is the metric that makes D[O,o) a complete separable

1 metric space and under which convergence is equivalent to convergence

on D[0,k] for all k . For a detailed treatment of convergence in

I this space, the reader is referred to Lindvall [29].

I
I
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We now define determining and convergence-determining classes:

Def. 2.14: UcS is a determining class if two probability measures P

and Q on S such that P = Q on U implies that P Q . U

is a convergence determining class if for any sequence of probability

measures on S,JPn}
nn=

P [A] -. P [A] for all AeU;P [aA] 0
n 0 0

implies that Pn -Po"

I A convergence determining class is always a determining class. In

many cases the reverse is also true. For instance, in the cases of RI

and Rk discussed above, and even in sequence space Re', the finite

jdimensional rectangles are both determining and convergence determining.
Therefore to establish weak convergence it is sufficient to establish

I convergence of the finite dimensional distributions which can be done,

for example, using characteristic functions. The essential difficulty

Iin D[O,c) is that the finite dimensional rectangles are not convergence

1 determining. Therefore, convergence of the finite dimensional dis-

tributions is necessary but not sufficient for weak convergence.

JConvergence of the finite dimensional distributions along with
the notion of tightness is necessary and sufficient for weak convergence

I in D(O,-) and most of the classical proofs use this argument. How-

ever, tightness is usually quite difficult to establish in specific

cases. In our proof of weak convergence for the Ct process in

I Chapter VI we are able to avoid tightness arguments by considering

an embedded renewal process and an appeal to a technique similar to

I that used by Durrett and Resnick [2.0] in discussing weak convergence with

iI
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random indices. The major usefulness of weak convergence lies in the

continuous mapping theorem, which we now describe.

Theorem 2.10: Suppose that Xn, n > 0 are random elements of (S,S)

defined on (g,B,P). Suppose that h:(S,S,p) - (S-,S,p-), i.e.,

h is a measurable map from S into another metric space S'.

Let Disc h = (xeSlh is discontinuous at x1 . If P[X o cDisc h] =

0 and Xn > Xo  than h(Xn)-> h(X ).

By considering useful maps onto other metric spaces, then, weak

convergence of derived processes can be easily obtained from the basic

weak convergence. For example, consider the mapping from D[O,) into

02[0,-) defined by

ht(x) = V*x(u), Ax(u)
O<u<t O<u<t

This is a continuous mapping from 0[O,) into 02[O,_), so that if we can

establish that xn(.) ->xo(.) in D[O,-), then it follows that

(VXn(u), nX (u_ ) (U), AX u

O<t O<u<t 0<<t 0<u<t/

Now consider the continuous mapping from D2[O,-) into D[O,-) defined by

h(x,y) = x-y, and we can establish that

VXn(U) - AXn (u) VX0(U) - AXo(U)

o<u<t o<u<t 0<u<t o<u<t

so that the range function of the random elements xn(.) will converge

weakly to the range function of the limiting random element x,(-)

?0

m



!
I

CHAPTER III

ANALYSES OF MOMENTS AND AUTOCORRELATION FUNCTION

FOR THE DOUBLY INFINITE DAM

The doubly infinite dam is of interest for preliminary sizing

studies, as has been discussed earlier. Before any useful information

can be obtained from an analysis of, say, the range, a particular

model must be entertained. Not only must one model be selected out

of various competing models, but also once a model is selected there

may be several parameters which must be estimated in some fashion. For

example, the Markovian models considered in this investigation contain,

in the general formulation, the following parameters:

m states u1,.-., 1m

(m-l)m jump probabilities i
"1 -1

m mean holding times X,. m

This is a total of m(m+l) parameters which, if m is only

slightly large makes the model difficult to work with. The two-state

case contains two rates and two mean holding times for a total of four

parameters, and the symmetric case reduces to two parameters. Although

these special cases undoubtedly oversimplify the situation, neverthe-

less they contain a manageable number of parameters from which exact

expressions of quantities of interest may be explicitly obtained.

In order to both check the fit of the model and perform an initial

estimate of the parameters it is desirable to know the theoretical

moments, or in this case, moment functions for the model. In particular

the autocorrelation function is of benefit in the fitting of stochastic

32
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models, since it can be matched with the sample autocorrelation function

of the data, which can be easily measured.

In this chapter we will investigate the following functions which

m we now define, for the general case (as far as possible), and the two-

state case.

For a stochastic process Zt, t > 0 with finite second moments,

we define as usual the

mean function mt = fuP[Ztedu]

second raw moment function m(2 ) = fu2P[Ztedu]

variance function a2 : m=2) - m

cross-product function mst = ffuvP[Zt du,Z sdv]

covariance function Kt s  mst - msmt

autocorrelation function p ts Kt,s/ts

If the process Zt  is strictly stationary with finite variance,

then clearly mt and aF will be constant and pt,s will be a function

of t-s only. If, on the other hand, these three conditions are met

then Zt  is called second-order stationary.

We will now investigate as much as possible the above functions

for the marginal process on the doubly infinite dam: Xt, the Markov
t

chain, and Ct = f Xudu , the unrestricted contents process.
0

3.1 General Case

3.1.1 Markov Chain

Suppose that the Markov chain Xt  has, as generator,

S- i i

xiwij, i~j

and suppose that it is defined on states p , . Let

1
I
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i (t) =P[Xt=i] as before. In the subsequent formulae, we will drop

the upper and lower indices on the summnands, which will always be m

and 1 respectively. We assume throughout that the eigenvalues of

I Q are distinct.

I t Ui~ (t) (3.1)

I ~Mt,t+s = P~ijPEXt = i, X = i

- u~i~si ~ t by the Markov property (3.2)

and

ta [~w~t (~t)] 2

For the covariance function we obtain, using (3.1) and (3.2)

giving for the autocorrelation function

Itt+ jZUi(ilii-Uj)7ri(t+S)wfj(t+S)]

1 j (3.5)

INow, when the Markov chain has its stationary distribution 7 , we

see that P ~ is a function of s alone, given by

PS ij( ~ ~ - 2 (3.6)

uIu-j~ir
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Using the expression for Pi (s) from section 2.3.2 this reduces

to m ekS

1 3 k=2 ,k (3.7)

or m Oks
Ps = k e (3.8)

k=2Ck

where

Stki r kjii J~

I Ck 1 3

I ! ~ ~ 1i ( 3i 13i

Since Re(ek) < 0 , this shows that ps as s-. This also

shows that the rate of convergence is governed by the eigenvalue with

largest real part.

I 3.1.2 Contents Process
t

We now consider the contents process Ct  f Xudu . For
0

this analysis we also assume that Xt  is stationary. Ct  is the net

I input (input-release) in (O,t) for a doubly-infinite dam whose net

rate of change of level at time u is Xu  This is the continuous

time analog of the cumulative sums of a Markov chain {Xn, n=0,l,2,...}

as considered by Odoom and Lloyd [36], Ali Khan and Gani [1] and others.

Since the typical procedure is to observe the input at a discrete set

Jof times {0,h,2h,...} it is useful to know, for modelling purposes,

the mean and covariance function of the increment processI
I

:1



I
36I

=ft+ h
xht =x(u) du C t+ C. - (t -(3.9)

h t 2 hi t-h

These are the same increments treated by McNeil for a special

two-state case where one of the states is zero. We will examine Ah(t)

more generally. The relevance of A n(t) is that by looking at

Pt,t+h for the Ah(t) variable, we will be examining the correlation

between adjacent increments. This correlation will then provide an

indication of the degree of approximation to our process by one with

independent increments for which, of course, Pt,t+h = 0 . For the

rest of this section, the moment functions which we develop will be for

the increments of the process, which we will denote by an argument of

h in the function.

For the mean function we have

t+ h

EAh(t) = E 2 x(u) du = ii h

f h1

For the second raw moment function, we have

m(2) (h) E 2 E x(u) duj

= 2f C

h h

-2 +t I~~xEld E (.0
1 ' . +g. +h
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where we are now integrating over the half-rectangle in which

I U> .

Using (3.2) and the results of seGtion 2.3.2, we can write (3.10)

I as

h h m k(u-)2)(h) -2 t " i j  j + k t.k. idu d&
h kt 2 .€ ~ (3.11)

J After performing the indicated integrations, (3.11) becomes

(2 m ek
S2(k) 2 tjj Eki Ekh -1

Ii j k-2 k
I °k

+ UiUjiit j h2  (3.12)1 3

For the variance function we obtain

1
t+ h~ 2

m 2) j 2 (3-1 4)

- e7 (3.13)ansbtttn ro 31) eoti
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For the covariance function we have

Ktt+h (h) =Coy [,/' x(u) duf h2  x(u)du]

t+3 t +

- r h f 2 Cov~x(u)x(t)] dt du

t+ 2 2

3and, substituting fo r Cov[-,-] fromthnueaoof(.)weav

t + h t +3h euKtlt+h(h) f h f h i j k=2

1 (3.15)

IThe integration in (3.15) is straight-forward and we obtain finally,

IKt,t+h(4) F E E tki r ki -7)(e eekt

IExpanding the product makes the dependence on t disappear, and

I we have

Kt th1) M= Z ; +±t ~ +e 2 ekh _ 2e k h] Ujj (3.16)

j Since the variance of the increments is free of t , we can use

equations (3.14) and (3.16) to write the correlation function as
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=W 2 1o,
(hh)kh (3.17)
-tt+hh) j _ [_ e kh

!J ; k

McNeil notes that for his two-state model with p, = a and V2 = 0,

Pt,t+h is free of a . This becomes obvious from (3.17), since

in this case there is only one summand and the pivj term becomes a2 ,

which cancels from the numerator and denominator.

We close this section by checking (3.17) for the McNeil model. For

the McNeil model we have m=2, P1=a and U2 =0 , whereas for a two-

I state model we have, as will be derived in the following section,

S'1= P/x+p and e2 = -(X+p). Hence

- (X+p 2

= 1-ePt~~h~) =2[(X+p)h-l+e.Xph-

the same as found by McNeil.

3.2 Two-State Case

In the two-state case, we can obtain some simple expressions for

the moment functions.

3.2.1 Markov Chain

-- In this case the generator matrix is

w ( o)
1 which admits the spectral decomposition

-!
I
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Q : TAT - I

with3 0u
A 0 - (Ap

and

I /1 Ax"

S From which we get

The stationary distribution satisfies r' Q 0- from which it follows

that

From the spectral decomposition of Q , the transition matrix and

the moment function are easily obtainable. Since this is the result of
routine algebra, we merely state the results. The moment functions are

calculated under the stationary distribution.

Mt (X+p)- (pU1+XU2)

I
I
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m (2) z XP-1
tm = (X+p)2 (+ )

m 4 (X+)-2[(1-I2) 2  +

mtt+s (2+p)_- p(+X~a ( -(X+p)sl

KS p (X+ )s
PS e

We note that all limiting values have an exponential rate of conver-

gence with (x+p) as a multiplier of t . Thus x and p both

contribute equally to the order of convergence. In addition, note

that P5  is free of 01 and u2

3.2.2 Contents Process

For the contents process, when Xt  is stationary, we

obtain

mt = [uixjit = (p+X) "  (ppli+A'2)t

mt()= P 1i1ji ft fjE P i(s)ds + ft_ P ii(s)ds d&
I j0 0 0 s

The integrations are straight-forward, and we obtain finally

(2) .m2 - 2(x+p)4pX(U-U 2 )2  -e -(+p)t

from which

02 2(+p)px(v-U [e +P)t+ (A+p)t - lJ
ft

[i 4II
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I
We notice from the above that the variance function is proportional to

the square of the difference between the two states, and the large-t

growth is approximately linear.

Rather than examining the correlation between arbitrary points of

time, we again consider the correlation between increments,which is

easily obtainable from eq. (3.17)

r 262h e2hi t r
1 + e -2e 2i j i

Pt,t+h (h)

J2[-e 2h+e2 _]2 z2*;l ~
j 82

-(X+P)h -

2 (x+p)h - I +

the same as found by McNeil. Note that Pt,t+h is free of the states.

This is a slightly more general result than the one reported by McNeil

where only one state was arbitrary.

I-



CHAPTER IV

ANALYSIS OF THE RANGE IN THE DOUBLY INFINITE DAMI
In this chapter we begin the range analysis for the unrestricted

t
contents process Ct =f Xudu in the doubly infinite dam. Let T

be an exponentially distributed random variable with mean s and

I independent of the process (XtI , and let

M= sup{C~ 0 < u < T1, (4.1)

ms = inf{Cu, 0 < u < TI (4.2)

where as before {X t } is a finite Markov chain with generator Q andIt
Ct =f Xudu

0

We shall determine the joint distribution of M and ms which

1 in principle determines the joint distribution of

Mt = sup{Cu , 0 u < t}, (4.3)

mt = inf{Cu , O < u < t}, (4.4)

and hence of the range

Rt = Mt - mt.I
A closed form expression for the distribution of Rt is

1 difficult to obtain; however, we shall find an explicit expression for

ERt in the symmetric case and investigate its asymptotic behavior for

I large t.

43
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4.1 Joint Distribution of Ms, ms

Define

e(xui) P[x+M s < a, x+ms >_OlX o  i , 0 < x < a

(4.5)I
Then, appealing to the strong Markov property of (Xt,Ct) as shown by

Erickson [20-1] we can write the first jump equation for e as

e(x,Ui) -P(x,Ii) + e (x+UiuIj)xije idu

(O<x+uiu<a) (4.6)

where p(x,u i ) represents the case in which there are no jumps. For

p°(x'ui) ,therefore, we can write
fi / x vi  " iu -su

se du (Pi < 0) (4.7)

0
a-xi Xui f A~ -Xu -su

e se du ( 0i>O) (4.8)
: 0

Hence

- e +S) X (ui < 0) (4.9)

p(XP i ) s= (xi+S

i 3 1 - e( (A i 0) (4.10)

e is a bounded, measurable function on the state space of the

bivariate process (Xt,Ct). Hence, as shown by Brockwell [12] the

system of integral equations possess a unique bounded solution and

e(x,u i) satisfies the Kolmogorov backward equations.

I
,- ! .
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Wri ting,

Ii(x,s) 1 - e(x,p i) 1 1 - P[M s < a-x, m > -xlx o  4i]

i(4.11)

we find by differentiating (4.6) that

(x,s) = D1 (Q-sI) *(x,s) (0 < x < a) (4.12)

where ,(x,s) = (O1(xs),.., *,m(XS))

I and D = diag(pi)

with boundary conditions

*i(a,s) 1 i > 0)

* ¢i(O,s) = 1 l i < 0)

The system (4.12) has the solution

V(x,s) = exp[-D0'(Q-sI)x] *(O,s)

4.2 Explicit Solution for the Two-State Case

J Suppose that Xt  has generator

I Q= p

and is defined on the states I > 0 and 12 < 0 . In order to

determine exp[-D' (Q-sI)x] , we spectrally decompose M = -D- (Q-sI).

The eigenvalues are given by

1~~ 1_ ~ 2 s(X+P)
a-s o+s+-+i] + + -S
12 V1 I2 )1 11142
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We note that, if we set

I+s 
,

I then

6 = d + (Idi + A), where a > 0

Case 1: d > 0 Then el = d + d + A = 2d + A> 0

1e2 =d - d - A = A<-

I Case 2: d < 0. Then el = d - d + = A > 0

62 = d - (-d) - = 2d - A < 0

So that in either case we have

I I > 0 ,e 2 < Q.

The right and left eigenvectors can be taken to be

I tf = (XX+s-e1 1)

~=

Irz = (lI2XSGP)Mx

We now note that we can write e v ,v an arbitrary column vector, as:

Mxelx e2x

eMXv Itlr'V e + t2rv e

Hence/
Ale + B

le

e )v X 62X
IA 2e +B 2e

whereI AI 1  1A, tl2  ' t12A1 = tl1 A2  (4.14)I

I|
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and

S i.e. t22B1 = t21B2

B2 t22

With this in mind, we can write the system (4.12) as:

mI(x,s) = Ale + Ble (4.15)
81X e2X

*2 (x,s) 
= A2e + B2e

with auxiliary conditions for A,, A2 , BI, B2 given by

o1a e2aAle + Ble =11
A2  + B2  from the boundary conditions

ad A2 + 82 =1
and

, (x+S-elii1)A1 = XA2 from (4.14)
(A+s-92PI)B I A B2

Solving for Ai and Bi we obtain

02a

xe - (X+s-e2;1 )

eA=~ (4.16)0I 2a  ela

e (x+s-eull) - e (X+s-e 2Pl)

[X+s-elpl
A2=  X Al

ela
xe - (x+s-elpl)

B 81ea e2a

e (A+s-e2~P) - e (x+s-el.l)[X+S-62)J1
2 = B

The exact joint distribution of M and ms  are easily obtained from

(4.15) and (4.16),from which the exact-distribution of Rs = M - ms ,I
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the range to time T can be obtaine in principle. An exact solution,

however, is analytically intractable. Hence, rather than looking for

the exact distribution of R , we will look instead for its expecta-

tion, since by linearity of the expectation operator, we can obtain

this using knowledge only of the marginal distribution of Ms and ms

4.2.1 Marginal Distribution of Ms

m In the definition of ,letting y = a- x ,we have

I mi(ys) = < P[Ms  y, ms > y - aix =i

Therefore, the marginal distribution of Ms  is given by

P[M s y = lim i(Ys)

Since 9, > 0 and 82 < 0 , and noting from4.16that lim B. exists

and is finite, i=l,2, then from4.15it follows that

m9 (a-y)
nlim (Y,S) = lim Ale , i = 1,2

and, after evaluating this limit we have

i (y,s) :e ely

X+s-ejy1 -ely
m 2(yIs= e

Therefore, if the initial rate is positive then Ms  is exponentially

distributed with parameter e1 • If the initial rate is negative, then

MS  has a truncated exponential distribution with parameter el and a

mass at 0 of size

I P0

III
• -I
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Therefore it follows that

* I E[?4 (I] = .

E[1sP2) = (e1X) '(X+s-jiPi)

1 4.2.2 Expected Value of Rs

By the law of total probability

ERS = E(M s-m S) = IE(M5I111) - E(msIii)] [ 1 X(o) = 11

+ [E(Ms5 12) - E(ms1)12 )] [P X(o) = 2]I
However, from consideration of symmetry we have

SE 5E mslIi1 = - E[Ms5 -li]

J ( EE[ms l 2] = - E[MsI- 2]

I Hence

EEM5-m 5J = [E(Ms(Pj + EQMsjiPjJ] P[X(o) = Vii] (4.17)

+ [EEMSIpz + E(M5 I-P±2)] PEX(o) = P1

I Stationary Case

We now evaluate ERs when X(t) has the stationary distribution,

which in the two-state case is r- 1 +p) I (X+P)

i Substituting the appropriate values into (4.17) we obtain:

E- (+p)- 1 @I (P+X+s-e1 1)+81 +IX_ -(X+s+e12)

li where

' J.
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2-1S +S X~s +(+)

I e = - ± + L112J PLS + X+s ____

2 1U  12 " 1112

4.2.3 The Laplace Transform of ERt

If mR(t) = ERt , then since

-stI ER s f mR(t)se dt
0

I it follows that the Laplace transform with respect to time of ERt , say

mR(s) , is given by

I R (s)  = s'ER s

I Although the general two-state solution is easily obtained from (4.18)

we will further restrict our attention to the symmetric case to perform

an exact inversion:

Symmetric Case 1'1 -2 = b, A = p = a

/2ab+s 2

and In this case we obtain after simple algebra that el =  /2 b2

and1

.)= ba-1  2a +s -l(4.19)
R(s) [ as+s2

We can write m R(s) as

R rn(s) - ba-'s1[(2as) (2a+s)(l+s/2a) -1.

Expanding (l+s/2a) "h in a Taylor series about o , we obtainI

I
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I+ Fa - 4 an4n n!

Hence, combining like powers,, we have

(2a+s) + " = 2a + I s + + 2a) s2(l . 4 2a22!

+... + [()n-i 1-3...(2n-3I 4 4n-la n-l (n-1) !

+ )n 2-a-l.3...(2n-l) sn +4na nn !""

INoting that
1-3... (2n-3) 2.a..3 ... (2n-1) = 2-1-3 ... (2n-3)

4 an- (n-1)! 4nann! 4nanln!

Iwe have

(2a+s)(l+s/2a)"- 2a + 1-s + E (_)n-l 2..3... (2n-3 s n
n=2 4a n!

from which we get
-~a 3 / 2 -3/2 - - .

mR(s) a-3/2 s (2a+s)(1+s/2a) - ba s1

I
-3/2 1 ..1 -3/2 ..-- Vb a-s b ba"s + Tb a s

+ v7ba-2  1()J+l 1 3...(2j+l) 2j+

I ' 4J(j+2)! (4.20)

1 valid for 0 < Isl < 2a

4.2.4 Explicit Inversion of Laplace Transform

'I Equation (4.20) gives an expansion for nR(s) in increasing

powers of s. Although such a form can not be used for term by term

II
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inversion, it will be useful to derive an asymptotic expansion which

I will be discussed later. We now perform an expansion in terms of

decreasing powers of s from which explicit inversion will be possible.

Returning to (4.19) we can write it as

- - [ 2a+ . 1 + s+ .,

mR~a,b,s)= bas - ba 1 ~ --1-

/2asT+ J
Using the binomial expansion of 1 +2a\ , we obtain

lk 
k ak-I

vali for I21< 1 . i.e., Isl > 2a.

Equation (4.21) provides a power series expansion for mR(s) which

is absolutely convergent in a neighborhood of infinity. In order to

perform term-by-term inversion, we appeal to a theorem found in

I Doetsch [19" which we now state:

Th: When f(s) can be expanded in an absolutely convergent series

I for Isi > R of the form

Iwhere the x form an arbitrary increasing sequence of numbers

0 < < . , then the inversion can be executed term by

I term:
• n1

f(t) 
a n

n an r(x,)

I
I
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The series for f(t) converges for all real and complex

I t 0

The conditions of the theorem are met by (4.21), with

a n  ) 2nan and = n + l

Therefore, we have for the inversion

R(abt) = b kl k! (4.22)

I The series in (4.22) can be expressed in terms of a confluent hyper-

geometric series which we now define:

I Def. The confluent hypergeometric series with parameters aeR and

yeR is denoted by F(ct,y,x) and is given by

F(cxyx) =  E () xj

where (a)j - a(a+l)...(a+j-l) for j-1,2,...

l =I for j = 0.

The confluent hypergeometric series converges for all x (Buchholz

1[15]), and has been tabulated in [27].

Returning to (4.22) we have

I 2kaktk

Hence,

mR(ab,t) F(-h l,.2at)-l] (4.23)

I The confluent hypergeometric function for a negative argument

1 behaves like a very slowly converging alternating series. This makes

it difficult to compute numerically. However, we can use Kummer's first

I
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formula found in Buchholz to express it in terms of a hypergeometric

function with positive argument. Kummer's first formula is

F(ajx) exF(s-aa,-x)

I Using this, we can re-write (4.23) as

m (anbt) rca " [ aF(3/2'1,2at)'l].

For numrical calculation on a computer this form is useful, for

the confluent hypergeometric function is now a monotonic series which

converges rather quickly, and the internal computer algorithms can be

used to calculate the exponential term.

We present one last form for mR(a,b,t), using formula (14), page

* 7, of Buchholz:

-2at 2at
MR(a,b;t ) = b2e f eV (2atv).3/2 dv (4.24)

i arr(- ) 0

4.2.5 Asymptotic Expansion of Laplace Transform

Equation (4.23) provides the exact mean of the range to

time t in terms of a known function. Howeverthe asymptotic behavior

is not evident from this form. To study the asymptotic behavior, we

make use of the technique of asymptotic expansion of the Laplace Trans-

form, following Doetsch.

We first define an asymptotic expansion:

Def. A function *(z) is said to have an asymptotic expansion

", (z) as z-. , written O(z) : ,(z) , iff
-v=O v-0°X V o

n
*(Z) - I OV(Z) = 0( n(z)) as z-ow for every n=l,2,...

vZo

Another way of stating this is to say that

I
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nIn*(z) 
-z 0 as z-.

This says that the error *(z) - not only goes to zero, but it

is of lower order of magnitude than the last term in the sum.

We now state a theorem found in Doetsch which can be used to obtain

an asymptotic expansion for mR(t):

Theorem: If f(s) is the Laplace transform of f(t) , and f(s) can

be expanded in a neighborhood of ao in an absolutely conver-

gent power series with arbitrary (perhaps non-integral)

I exponents:

f(s) = C (s-00) , N < X, <
VZO

1 (where N is a positive integer) then the following

I asymptotic expansion for f(t) is valid for t-..:

%t C -X -1

f(t) e0  - t Vj =o r(-x)

with l =0 if X =0,1,2....

We wish to apply this theorem to (4.20) with m = 0 , but first we

I must remove the singularities at zero. To do this, define

1 f(s) - rR(s) .; V2b a'h s-3/2 + b a's "-I b a- 3/2 s-

I Then

20+
f bs) = =x: ()+l 1.3 ... (2i+l i +16 j=O 4j (J+2)! a

I

I
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This is an absolutely convergent power series with

Cj - (-l)J+l l-3...(2j+l)a

4j(j+2)!

2j +1
and C. (

Applying the theorem, then, we obtain the asymptotic expansion

f(t) -i 1l.3 ... (2j+l) .(at) 2. 4.25)
T- aj=O Jj2l il

We now invert f(s) term by term to obtain

f(t)=mR(t) -b t + k - 3  /" b -

"ai a TF/T It (4.26)

Therefore, the asymptotic expansion of (4.26) is given by (4.25).

As an example of the application of this asymptotic expansion,

we can take just the first term and obtain the limit

mR(t) - b/ .t '+ b. - (- "-/2

lim ba 4b6 a2r 0

t-IM a(b 0 at)-3/2
7 a 2r(-1/2)

or, equivalently,
bRt 8 !. th + k 3 /2 b t-h

lim =l
7' b t"3/ 2

a (-1/2)

- which says thati
mR(t) " -L t[ " 37 ",7 7T-1/2)=

I

I
-
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In particular, since t- -+O, then as t-

I mR(t) 8a . (4,27)

I Notice that if b - a then

3 mR(t)-/ t

which is the value for the Wtener process. This is far from coinciden-

tal: In Chapter VI we will prove that under these conditions the

process will in fact converge weakly to the Wiener process.

4.2.6 A Note on the Hurst Phenomenon

I For the Wiener process it is well known that the maximum

random variable has distribution

I P[M t < x] = 1 + 2 0(O,t;x), x > 0

J iwhere 0(O,t;x) is the normal distribution function with mean 0 and

variance t .

- Hence we obtain for the mean, say EMt

EM ~ t =j e~ dxA t
0f V2irt

I Since the expected range is given by

I ERB (t) EMt -Em t

I
!

I
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and since for the Wiener process Em = - EMt , it follows that
Ut

ERB(t) = 2EMt
* or

ERB(t) 
= // t

I
By appealing to the continuous mapping theorem one can hope

that this well-known result for the Wiener process will also hold

asymptotically for any process which converges-weakly to standard

I Brownian motion.

i H. E. Hurst [26], in studying large amounts of data involving

streamflows, rainfall, pressures, etc., found that ERn appears to

vary as na with .69 < a < .80. The average values of a observed

by Hurst was .72. Since his discrete time models for these processes

I were assumed to be made up of sums of independent radom variable, then

the theoretical behavior of ERn should have been as n.5. This

discrepancy became known as the Hurst phenomenon and was commented on

in the introduction.

Although no completely satisfactory answer has been provided to the

phenomenon, at least two theories have been suggested. The first is

that the assumption of independence is not valid, and the observed

growth of ERn  is the result of serial dependence in the series of

summands. However, as noted by Moran £33], such a dependence would

have to be of a very peculiar kind, since with all plausible models

1 the large time behavior is approximated by an additive process, whose

growth rate is n

The second theory is that, due to dependence of the summands, the

series studied by Hurst are not of sufficiently long duration to exhibit

I
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the asymptotic behavior, and hence what he was seeing was the pre-

asymptotic behavior. Several models have been suggested which exhibit

this behavior in discrete time.

In our continuous time model, the analog of dependence of the

summands is dependence of the increments of Ct , Asymptotically we

have shown that ERt behaves like However, it is of interest

I to investigate ERt for finite t to see if the Hurst phenomenon

appears pre-asymptotically.

In Figure 4.1 is a plot of mR(t) vs. t for both our Markov

model with a = b = 1 and for Brownian motion. In Figure 4.2 is a

I plot on a logarithmic scale of mR(t) and V/' t"72 vs. t for

i1 < t <2 . From this plot it appears that the rate of growth of

mR(t) is closely approximated by a power of t , and within this range

of time, the power of t is close to Hurst's average of 0.72.

The rapid convergence to the asymptotic value is apparently

I inconsistent with the length of the series studied by Hurst. However,

by returning to equation 4.27, we note that taking a and b so

that b = a does not change the asymptotic growth rate. We now note

J from Eq. 4.24 that in this case,

mR (a,b;t) = mR(l,l;at)

Hence by choosing a sufficiently small, we equivalently perform

Ja time expansion, so that the approach to the asymptotic value can be

delayed as long as desired. Now, if our model is to display the Hurst

J phenomenon up to, say, t = 2000 (years), we would need to take

a - .001. However, such a value of a implies that the correlation

between successive yearly increments is, from Eq. (3.3),

IPI '
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Corr[A1(t),A 1 (t+l)j 2.i002-+e ] 99865

I This value is much too high to be realistic. However, if we take

a = .1 , then we obtain

i Corr[Aj(t),A1 (t+l)] = .87720.

m Thus a stream flow with a yearly correlation of this value and following

this model would display Hurst behavior out to approximately 20 years.m
I
I
I
I
!
I
I
I

1
I
I
I
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CHAPTER V

INVARIANCE METHODS IN THE ANALYSIS OF SEMI-INFINITE AND FIITE DAMS

5.1 General Description

In this chapter we will develop the application of what we call

in general "invariance methods" to the analysis of storage theory

problems. These methods are well-known in the fields of astrophysics

and particle physics, where the power of these techniques have been

recognized and well utilized. Originally formulated by V. A.

Ambarzumian [3] in 1944, the techniques were formally developed by S.

Chandrasekhar [16] in a series of papers on radiative transfer through

semi-infinite stellar atmospheres which appared in the Astrophysics

Journal from 1944 to 1947. Subsequently Bellman and Kalaba in 1956 [5]

refined the technique by applying it to finite regions in the field of

I particle transport, in which they called the technique 'invariant

imbedding.' A good definition of invariance methods is given by M.

Scott [40] who states that the method involves:

generating a family of problems by means of a single
parameter, where the basic properties of the system remain
invariant under the generation of the family. The family
then provides a means of advancing from one member, some-
times degenerate, to the solution of the original problem.

After providing a brief description of Chandrasekhar's and Bellman's

application, we will establish what will be a natural application of

these methods to storage theory. In particular we will take advantage

of the power of the invariance methods to derive the Laplace transform

of the 'wet period,' and from this obtain moments and the limiting

probability of emptiness. This will lead us to a discussion of neces-

sary and sufficient conditions for the recurrence of the contents

63
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process. Although some of the results that we present in this section

are not new, we will be able to derive them in a direct and simple

fashion, avoiding the Kolmogorov differential equations which have

Ipreviously been used to derive these results. In fact, in the case of

the semi-infinite dams our equations are algebraic in nature.

5.1.1 Chandrasekhar's Principles of Invariance

g In his application to astrophysics, Chandrasekhar was

concerned with the transfer of radiation through a stellar atmosphere.

In studying certain aspects of the radiation, such as the intensity, he

considered the atmosphere to be stratified in parallel planes in which

all of the pertinent physical properties are invariant over a plane.

When considering a semi-infinite atmospheric region then, he utilized

the fact that certain physical laws governing radiative transfer must

J be invariant to the addition or subtraction of layers of arbitrary

optical thickness to or from the atmosphere. Through this 'principle

I of invariance' as he called it, he was able to increment the arguments

in the equation governing the physical laws of radiative transfer

while still maintaining the basic equations. These perturbations of the

j equations then led him to direct solutions for the physical quantities

of interest.

In studying the time to emptiness in a semi-infinite dam, the

essential similarities of the two problems become clear. In the case of

the dam, the strong Markovian character of the bivariate process (CtXt)

I makes it possible to consider the process as regenerative at the

stopping times corresponding to first entrance into an upper semi-

j infinite region after traversing an incremental slab of arbitrary

thickness. Thus random variables such as first passage times become1
I
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'invariant' to the addition or subtraction of these finite incremental

slabs. Seen in this context, one notes the similarity between

Chandrasekhar's Principles of Invariance in stellar atmospheres and the

regenerative property of a Markov process. In fact, this entire dis-

cussion could be phrased in terms of regeneration. The essential

difference, however, is that in the classical analysis of Markovian

1 structures the principle of regeneration is used to establish

Kolmogorov-type equations which are generally partial differential

equations. These equations normally provide much more information

about the process than is required for the study of particular aspects

which become essentially boundary conditions for the Kolmogorov equa-

j tions. For example, suppose that we are interested in the wet period

for a semi-infinite dam: that is, the time elapsed from an initial

exit from zero to a first return to zero. In the two-state case, if

we let

T = inf{t > 0 :C = 0

then we may be interested in finding the Laplace transform of T

j~ ~ F sTk = >0
s E~e 0 ., 1

I Now, by setting up and solving the Kolmogorov backward

equations, Brockwell was able to determine the Laplace transform of the

time to first emptiness given an arbitrary initial level x Thus if

S€is (x) represents this transform in the general case, then

5is(x) - Ele'sT Ixo = 4

where T - inf{t::t > 0 , t = -x}I
Im
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However, the solution depends on ,is(0) which in Brockwell's

formulation was obtained from a rather complicated set of boundary

conditions. Invariant imbedding leads, as we shall see, to a direct

determination of s s the solution of an initial value problem when

the dam is finite and of an algebraic equation when the dam is infinite.

5.1.2 Bellman's Invariant Imbedding

As noted earlier, Bellman refined Chandrasekhar's Principles

of Invariance and applied them to finite regions in particle transport

l theory. Two excellent comprehensive studies on these applications are

I those by Bellman, Kalaba, and Prestrud [6], in which they apply the

technique to radiative transfer in slabs of finite thickness, and

j Bellman, Kalaba, Prestrud, and Kagiwada [7], in which they apply it to

time dependent transport processes.

1In these studies, Bellman called this technique "invariant

imbedding," a name by which it has subsequently become known. The

Iapplication to time dependent transport processes is particularly
I, relevant to our study of the finite dam. Because the analogy to the

finite dam problem is not obvious, we will discuss briefly the former

1 process, and then draw the analogy.

The physical model in the transport process is of a one-dimensional

rod of fixed length . which is capable of transporting particles such

as neutrons. The particles are allowed to travel to the right or to

the left and can interact only with the fixed constituents of the rod.

jWhen a particle interacts with the rod, the old particle disappears

and two new ones appear, one travelling to the right and one travelling

[to the left. All the particles travel with the same speed and their

[ other physical properties are such that the particles are distinguishable

[N
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only by their direction. Suppose that we inject one particle at one

end of the rod, and are interested in the total number of particles

emanating from the other end. One approach to this problem would be

to derive an equation for u(x) = number of particles emanating from

the end of the rod if we start with one particle at x , for 0< x <9..

The desired quantity would then be given by u(o) . However, a more

J efficient approach would be to develop, if possible, an equation for

u(o) directly. This is precisely the approach used in invariant

imbedding. The invariant imbedding technique is to embed the original

rod of length t into a rod of length t + SL , and develop a dif-

ferential equation for u(L) . Whereas a differential equation for

u(x), 0 < x < z would lead to a two-point boundary value problem with

* boundaries at x = 0 and x = z, the differential equation for u(o)

is an initial value problem with initial value z = 0 . This initial

value is easily determined because of its degeneracy.

We now begin to see the analogy to the storage problem, which we

will list in the form of a table.

Particle Transport Storage Problem

1. Particles travel only to right 1. Dam contents only increase or
or left with fixed velocity, decrease at fixed rates.

2. Do not need to know entire 2. Do not need to know *. (x) for
function u(x), 0<x<t, but only all 0 - x < a , but o fy 0s(o)U(0).

3. Differential equations for 3. Differential equations for
u(x) lead to a two-point 0 (x) lead to a two-point
boundary value problem, where- b~andary value proolem, where-
as differential equations as differential equations for
for u(o) give an initial * (o) gives an initial value
value problem. p.oblem.

Table 5.1 Analog between Particle Transport and Storage Problem.

I:I
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5.2 Applications of Invariance to First Passage Times

I We will now use invariance techniques to study the distribution

of first passage times. In a later section we will discuss necessary

and sufficient conditions for these times to be finite.

5.2.1 First Passage Times for the Semi-Infinite Dam

5.2.1.1 General Case

mWe define the following functions related to first

passage times:

(a) The Laplace transform of the first passage time to level y

1 Let T = inf{u : Cu = y1 (5.1)

and define
I Tii (y) z E[e = (5.2)

I for >0 >0 , y > 0 and
T7 .(Y) E [e-st (x = (5.3)

13 E L {x ~ = iXO

for ui<0 pj < 0 ,y K0

If there are p positive states and m-p negative

1 states, let T+  and T" represent the corresponding matrices

with entries Ti. and Ti_ , of dimension pxp and

(m-p) x (m-p).

1 (b) The Laplace transform of the first return time to level zero:

For > 0 p < 0, let

Iwhere R = i E l Ix T  }Xo =u] (5.4)

I
r
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T =inf(t > 0 : Ct = 0} (5.5)

ILet R-be the px(m-p) matrix[R]

For i <0, 0uj > , the right side of (5.4) will be denoted

by Ri+ and the (m-p)xp matrix [R+ ] by R-

(c) The Laplace transform of the first return time to level zero

with no prior passage through a given level.

For i >0 , 1j <0, and y > 0 , let

ij (Y ) E I T Ixt  = {C(t) y , O t< T iIX0  = i (5.6 )

For Ii < 0 ,Pj > 0 , let

R-.(Y) = EesT I{x uj} I {C(t)O-yO<t<T }i1o = 4i-
-e T (5.7)

Let R+(y) be the px(m-p) matrix [R+.(y)] and letij

R-(y) be the (m-p)xp matrix [R:.(y)] •

The La.lace trarsform of the first riturn time of the contant uf

J a topless dam to zero given that X0 = Vi is

+

where Ri- is defined by (5.4). We now use an imbedding argument to

determine R . The time at which a sample path, starting at the zero

Jlevel, crosses into the upper region (y,-) is a stopping time, and

the strong Markov property of (Xt,Ct) may be applied at

I these times. Using this idea to obtain the desired first return time

to zero, we decompose R according to the number of reflections of the

Isample path in the slab (O,y) to obtain the relation

I
I
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R R +(y) + T+(y)R+'T'(y)

I + T+(y)R+'R "(y)R+'T-(y)

+ T + (y)R+ R "(y)R+-R "(y)R+'T'(y)

+ (5.8)

J - R+'(y) + T+(y) R+[I - R "(y)R+-]''T-(y) (5.9)

We now consider the limiting behavior of the matrices in (5.9) for small

y . First, note that

y
Tii(y) -i • ) + o(y) as yO (5.10)

and, expanding the exponential,

T+

Ti+(Y) = I - y (li+s) + o(y) (5.11)

Similarly,
Y

T j(y) = Airi. e i + o(y) , i~j (5.12)

= X. i..-- + o(y) (5.13)

Therefore,

T +(y) - I - y ID- (sI-Q)] ++ + o(y) (5.14)

where, for an mxm matrix M we define [M]++, [M]+. , [M] .+ , and

EM].. to be the partitions defined by

IM M+ M+. P (5.15)

iM.+ M.. (m-p)

p (m-p)

I
I4
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Through parallel reasoning,

T-(y) = I + y [D'(sI-Q)].. + o(y) (5.16)

For the R functions, it can be shown thatI
R+(y) = y[D-Q]+_ + o(y) (5.17)

* and -
R'(y) =-y[D'Q]_+ + o(y) (5.18)

Substituting (5.14), (5.16), (5.17), and (5.18) into (5.9) we obtain

IR += y(D'Q)+. I-y[o1(sIQ 4-+)

I+ R+LI+y(D Q) +71(1+yLD1(sI-Q)1 )+ oy) (5.19)

Since

I I+Y(D'Q)+R + .  I-y(DQ)+ R+ + o(y), (5.20)

then

SR +- = y(D'Q)+. + R+" - yjD-1(sIQ)++

S" R+'y(D-'Q)_+ R + + R+'y[D-l(sI-Q)]_ + O(y) (5.21)

from which we obtain, by taking the limit as yO ,

R+-(D-'Q).+ R+ - +[-1(sI.Q)]++ R- -

- (D' Q)+ = 0 (5.22)

1 5.2.1.2 Two-state Case - Laplace Transform of Wet Period

For thetwo-state case we remarked earlier that the

first passage time corresponds to the wet period in the dam. In this

I
I
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case we set Os = R12  in (5.4) and, making the appropriate substitutions,

I equation (5.22) reduces to

ss- 2 1 2 O A4 1i , 0 (5.23)

from which we obtain the two solutions

O *s= p2( 2p)-1[4 + (A2+4xpv1pIp) ] (5.24)

where

I A = s(p2 1-1i1 ) + P P 2 -X

I We must now select the correct solution. Since

J A2  , - as s - -, then oS

is unbounded for the positive solution, and so we conclude that

Os u2 (2p)'[A - (A2+4 j 1 -1) ] (5.25)

We now investigate conditions under which the first return to zero,I
T , is finite. First note that

o 112(2p)[ P112 X1-P + X01(5.26)

and

-1 -1 ___PA2 + l-

where m EXt when Xt  has its stationary distribution. We call m

- the drift of the process. Therefore,

1 if m<OI -o - (5.27)
if m>O0

I
I
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I Since o0 PCT < -] , then from (5.27) it follows that for the

topless dam, a non-positive drift implies that P[T < = I , whereas

a positive drift implies that PET < = - -

5.2.1.3 Ois tribution of Ulet Period for the Symmetric Case

If we set 1A, = b, U2 = -b, = p =a ,then the

m Laplace transform equation becomes

2o 2 + 2 s +s a -0

il or

*2- 2 ( ) + 1 -0 (5.28)

From this equation we see the rather surprising result that the time to

first emptiness does not depend on the states on which the Markov chain

is defined.

1 Solving the quadratic equation, we obtain

s a +a- ) (5.29)

which can be written in terms of I/s as

Os= s. [I +( + )a (5.30)

Expanding (1 + -) in its binomial expansion, we obtain

I I k (5.31)

Performing a term-by-term inversion of (5.31), we obtain the

I density of T , say fT(x), x >0 as

I

- - .
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f(x) = 2I[ (' )( - (-2a) +i(-L( L(/2 (-2a)
T 1-2 1.2.3 1!

+ (-h)()(3/2)(5/L .+ (5.32)

l We can write this in terms of a confluent hypergeometric series as

fT(x) = F(3/2, 3, -2ax) (5.33)

For the distribution function, say

x
GT(x) = PET Ix] = f fT(U)du

.0

we can integrate the power series term by term to obtain the series

G x 3/2 (-2a) .2 (3/2)(5/2) (-a 3o
l3 T.2 3.4 2!.3

(5.34)

5.2.1.4 Time Between Overflows for the Semi-Infinite
Bottomless Dam

l We now consider a semi-infinite dam with a top but

no bottom. This may in fact be a more realistic model than the topless

l dam, since actual dams are constructed and operated in such a way that

the probability of overflow is higher than the probability of emptiness.

I The analysis of the bottomless dam is directly analogous to the

analysis of the topless dam. Therefore, we will be brief in the

Ifollowing derivations. In the bottomless dam, if we measure the

contents relative to the top of the dam, which we can set equal to zero

without loss of generality, then for the contents process we haveI
KI

Ib...-i .. . .. .. .. - ._ ....... . .. ....... ... .. .. . f .... ill i , S.'L -:S ±" '' , ,n___.l__ __ _
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B /t
ct  f X*(u)du (5.35)

where 3 if CB 0 and Xu > 0
mX*(u) u

IX* u otherwise.
B

For the bottomless dam, Ct = 0 represents an overflow condition.

Let *s be the Laplace transform of the time to first overflow, given

I a starting condition, X0 = 2 . Then by considerations of symmetry we

can conclude that Os satisfies equation (5.25) with the parameters

A,p, and P1i02  interchanged. Therefore 0s satisfies

I
X1 XIi 1- pi- 1 S(11- 1-1)] 1 - = 0 (5.36)

from which it follows that

Os= p(2X)-' [A-(A +4xpu1 1) ] (5.37)

I where -1 -1

SA = (p-) + API -P2

The explicit inversion for the symmetric case is identical, since

I in that case the cwo exchanged parameters are equal. Therefore, the

distribution of the time between overflows in the bottomless dam is

equal to the distribution of the wet period in the topless dam, as

Iexpected.
By similar reasoning to that used to establish (5.27), we conclude

I that for the bottomless dam, a non-negative drift implies that

PCT < c] = I , whereas a negative drift implies that

PET < 1 - -.1U

Id
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5.2.2 First Passage Times for the Finite Dam

5.2.2.1 General Case

We now turn our attention to the finite dam with

m an upper boundary at a . In the same vein as (5.4), we define

R+-(a) = E I{XT = Lil X0 (5.38)

m with {CtI replaced by (CF I , the content process for the finite dam

where T is given as in (5.5). Let R(a) be the px(m-p) matrix

I [R •(a)
Using the same matrices defined for the semi-infinite dam, and

I using the same argument of decomposing R+-(a) according to the number

of reflections of the sample path in the slab (O,y) , 0 < y < a , we

can write the relations

R+(a) = R+(Y) + T+(y)R+'(a-y) R'(y)R+"(a-y) T(y)
i=O

R =R(y) + T4(y)R4-(a-y) [I-R_(y)R"'(a-y)] T_(y)

(5.39)

Using the relations (5.17) - (5.20), we can write

R+-(a) = y(D'Q)+_ + (I-y[D-'(sI-Q)]++)

R+-(a-y) [I-y(D'IQ).+R +(a-y)] (I+y[)f1 (sI-Q)]._) + o(Y)

(5.40)

so that

R+- (a) . R+'(a-y) = - R+(a-y)(Df'Q) +R+ (a-y)
y

-D-1 (sI-Q)]++R+-(a-y) + R+'(a-y)[D'1 (sl-Q)]_

+ (D-1 Q)+ + 2oXy (5.41)y

° o

I- " ........"" ,:• .... .. . " ..... .i ! ' .. . ,
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I Taking the limit as y.*O we obtain

dR +_(a R (a)(D-'Q) R'(a) + LD-'(sI-Q)] R (a)

3-R (a)[D-'(sI-Q)] (D1'Q)4  = 0 (5.42)

The initial condition is

R (0) = Ee~sTij

Iwhere TI~j is the first passage time from state i to state j in

the Markov chain. This variable is discussed in Chung L7].

1 5.2.2.2 Two-state Case - Laplace Transform of Wet Period.

IIn the two-state case, letting o(a,s) = +2

equation (5.42) becomes

a- j(as) + puwl1,2(a~s) + [~7(X+s) - U-'(p+s)] (a,s)-xpi1= 0

1 (5.43)

The initi-al condition in this case comes from the holding time in state

p which is exponential with parameter x Hence we have the

* initial condition

*(0,S) = AXS

We will carry out the complete solution for this case.

Equation (5.43) is a Riccati equation, which can be reduced to a

second order linear equation by letting

*(a,s) =y-(a,s)/b 0y(a,s)

where bo = P1

b,= 1(X+s)-p2 (P+S)

2 -u 
(5.44)
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The resulting 2 nd order linear equation, as can be easily checked, is

y"(a,s) +. blyia,s) + b bzy(a,s) -0 (5.45)

To solve (5.45) we first obtain the characteristic roots:

e-2 -4 + PL1P

(5.46)

Note that the discriminant is equal to

42 1ps2~ i~(+) (547)

4 4

which is always positive because 112< 'J . Therefore the characteristic

roots are real, and the solution for y(x,s) is:

y(a,s) - Cle ea+ C2e a (5.48)

Substituting (5.48) into (5.44) we obtain
ela 92a

*(a's) Clele + C26ze (5.49)

Puz2 F[Cle ea+ C2e 9a

Now, letting C =C 2/C1 , we obtain

Oe a + 8ee2a

0(a,s) a] '*C~ (5.50)
- la 62a
L3 + Ce

which involves only one arbitrary constant. To evaluate this constant

we use the initial condition to obtain:
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0(O,s) , C2 (5.51)X,+s _U2 ( +12 (l+c)

I Hence -1x

C (X+s)e - P.A (5.52)
(A+s)8 2 - p92" A

I So we have as a final result that

Ole + Ce2eI ,(a,s) - J11 e +Cea (5.53)
mPuz-1[ ee l a + Ce 62a]

I where C is given by (5.52) and 81,02 are given by (5.46).

5.3 Moments of Time to First Emptiness for the Two-State Case

Since we have derived the Laplace Transorm of the time to first

emptiness, we can use these equations to obtain the moments without

having to actually solve for the transform. Although we could in

m theory write down the moment equations for the general case, the

resulting equations are not easily solved, and so we restrict ourselves

to looking at the first two moments in the two state case, for which

the equations are

dI T - ds 0sjs0

I ET= d2 O .A
ds

2

j so that

Var T = -- s=O - [I ]d

•ds2 S =0 I -I-
I
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For the semi-infinite dam we differentiate equation (5.23) to

* obtain

z O~1 (S)O'(S) - LPU2-,- xuj-'- S (viC'- .zj (54|s
+ (U - .12 )s 0

And, upon evaluating this expression at s =0 we obtain

"2PJ2 1ET + (P2" XPI )ET + ul -u2 2

from which we obtain

ET (5.55)PIP+U2X,

which can be written in terms of the drift parameter as

)TX m < 0 (5.56)

Differentiating equation (5.23) again, we obtain

2p4 sO - s - 5 2 - [ PJ- I- 1 - 9P - 2 1 0 s

2[u- 0 (5.57)

Evaluating again at s = 0 we obtain

2p-lCET2+E2T] - [pv -x'1 ]ET2.2(p1u2 1)ET 0

From which it follows that

[ 2(pj'-uj1 )E T - 2pvj1E2T

ET2 = -1 (5.58)
; P UJ2 " U2

)7
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Therefore

Var T :11 1 (5.59)

Similar calculations for the finite dam produce

I -i - I I ( 1I+Pj,21)a]

ET = (A + (5.60)

5.3.1 Conditions for Recurrence

I In analogy with the theory of Markov chains, we call the

contents process Ct  recurrent or transient depending on whether

I p=l or p < I where p = PLT < ] . In the recurrent case we

{call Ct  positive recurrent or null recurrent depending on whether

ET < or ET = . We will relate conditions for recurrence to

the drift parameter of the process, m

For the topless dam, it follows from equation (5.27) that m < 0

I implies recurrence, while m > 0 implies transience. From equation

(5.56) it follows that m=O implies null recurrence while m < 0

implies positive recurrence.

I By synmetry, for the bottomless dam it follows that m > 0 implies

positive recurrence, m=O implies null recurrence, and m < 0 implies

Jtransience.

15.4 Limiting Probability of Emptiness for the Two-State Case
Consider the time-dependent probability of emptiness

1 Pe(t) = P(Ct = 0) .

I if the bivariate process has a limiting distribution, then we consider

I
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the following limit

Pe = lim Pe(t)

We call this the limiting probability of emptiness, and it can be

interpreted as the large-time percentage of time that the dam will be

found empty.

Brockwell [12] has actually derived the limiting distribution

of the content by solving the Kolmogorov equations. However, as is the

case with the time to first emptiness, these equations require knowledge

of the boundary value Pe for their solution. Although Pe can be

j obtained by other methods, we present here a direct method of evaluating

Pe by using the previous results concerning the time to first emptiness

and a renewal argument.

5.4.1 Embedded Regenerative Process

IAssuming that X(0) =ul > 0 , define

Ti - inf{t > 0(Ct = 01

T2 = inf{t > TICt = 0

and, continuing in this fashion, define Ti , i > . The Ti's are

the first return times to zero of the contents process, and since the

bivariate process (Xt,Ct) is strong Markov and the T's are stopping

times, then they are regeneration points and the process (TI,T + T2,...

Is an embedded delayed renewal process (see Figure 5.1).I
I
1
I
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I
I I

Ii r2 T3
I

I regenerlations
I points

10 __

x T x T

I Figure 5.1 Embedded Renewal Process.

Now, thinking of this as a two-cycle renewal process with

cycles T and X , then it is a standard result of the renewal theorem

that

e EX (5.61)Pe EX+ Er

5.4.2 Semi-Infinite Topless Dam

For the semi-infinite topless dam we have

ET =jjj) k / (5.62)

and, by the memoryless property of the exponential,

X - exp (p) (5.63)

so that EX O_

Substituting (5.62) and (5.63) into (5.61) we obtain after some

-. algebra

P m (5.64)
e P2



d4

5.4.3 Semi-Infinite Bottomless Dam - Limiti ng Probability of Over-I flow
Using the symmletry between the topless and the bottomless

version, we can write for the time to first overflow, T

* ET m (5.65)'

and, using the analogous embedded renewal process, we have for the

limiting probability of overflow, Pf

Pfz A -1 -.2 = m (5.66)

1 5.4.4 Finite 'Dam
In this case, substituting equations (5.60) and (5.63) into

.1 (5.61 ) we obtain

e11 1 2j (5.67)

For the case U, =1, M2 =-I we obtain

~e aX(P-x A P)(e -(5.68)

which agress with the previously reported result [121.
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3 CHAPTER VI

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE

UNRESTRICTED CONTENTS PROCESS ON TWO STATES

6.1 Formulation

In this chapter we show that a scaled version of the contents

process Ct, 0 -t < , will converge weakly to the Wiener process on

D[O,). A short description of the topology of this space was pro-

vided in Chapter II. The weak convergence results of this section

generalize the results of Fukushima and Hitsuda [22] and Pinsky [38],

who showed convergence of the marginal distributions.

To establish weak convergence for Ct we appeal to a result given

in Chapter II that if Ti are the times of jumps of a Markov chain

and {Xn } are the succession of states visited, then if the sequence

(Xn is deterministic, the holding times are unconditionally independ-

ent, i.e.,

P[T.-T. > u.,j=l,...,m] = i e
J J-1 J j=l

In the two-state case the sequence Xn is deterministic, being

given by {1h, 2 ,1l,l2,...3. If we fix on the entrance times into the

01 state by the Xt process, we see that we can consider an embedded

renewal process with cycle lengths (ti) where

0=0
Eo0

E= T2  -T i =  2i " 2(1-1)

as seen in Figure 6.1.

!.8
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From Figure 6.1 we can see that the embedded renewal process is

really an alternating renewal perocess with two subcycles in each

interval. Thus the first cycle has length &I , and is composed of

the two subcylces of length T, - exp(x) and T2 - T, - exp(p) . The

second cycle has length g2 and is composed of the two subcycles of

length T3 - T2 - exp(x) and T4 - T3 - exp(p), and so forth. The

j slopes of the sample path over odd subcycles is ui(>O) and over even

subcycles is U2(<0) . We use the notation Wi to represent the wait-

ing time random variable for the subcycle of the i th cycle during

which the slope of the sample path is positive, and W for the sub-

cycle during which it is negative. Thus

W+  Ti = 2i-1- T2(i-1)

and

W= T2 i - lT2 i

Note that W.+ + W. = T2i - T = .i Let {S be the
, z i (i-1) 1i n n=l b h

renewal process, so that

n
Sn= (6.1)

Let N(t) be the renewal counting function for the Sn  process; thus

N(t) inf {jI E Ci L t}  (6.2)
i=l

Now consider
nt

C(nt) = nt x(s)ds (6.3)
0

Then, referring to Figure 6.1, we can write C(nt) as
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C(nt) f x(u)du - x(u)du (6.4)

0 nt

where the second term represents the 'overshoot' of the process to the

first renewal past nt , and so must be subtracted off to maintain

equality.

Since the sample paths of X(t) are piecewise linear with slopes

P, and u2 , we can re-write C(nt) in terms of the holding time
+

variables W- as
1 N(nt) N(nt)

C(nt) : . i il + W - Rn(t) (6.5)

i i

where S~t
Rn(t) =f N(t) x(u)du 

(6.6)

nt

Now define

Zn = W PI + W 2 -P (6.7)

Then, by Donsker's theorem (Billingsley [9]),

z2
, W !1 + on D[O,-) (6.8)

Returning to the original process (6.5), we can write

C(nt) = i 2)+ - "

+ ("I+ 11) N(nt) + Rn W (6.9)

7l
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or,

C(nt) = ZN(lnt) + -+ LO) N(nt) + Rn (t) (61)

Setting nn(t) =Nnt) , then {n (t)}n* are increasing processes

in t ,and for each fixed t

P
nn(t) as n-ow

Therefore it follows that

nn (.) - lE()])' (-) on DOO,), i.e.,

n Y

Since the limit is degenerate, then the following joint convergence

holds by Theorem 4.4 in Billingsley C9].

(6.12)

Using the continuous mapping

= x ,

we conclude that

W(8. on D[O,-) (6.13)

when 21 + j °+1)
x2 ~2 X P/

I

..
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-JR n
We now show that - -> 0 in DC0,-) .From 6.6 we have

R n tM Na] x(u)du

nt
* SN(nt)

<F Sup x(u) du
4J ft<u<SNl(nt)
nt

V(41,-ii2) (SN -t nt)

=V(ul .-u2) y (ft)

where y(nt) is the forward recurrence time evaluated at nt. There-

fore it suffices to show that

ALI--,0 in 0[0,.)

if 11.0 are the mean and variance of the interarrival times for

a renewal process, then Iglehart and Whitt £26.1] have shown that

( Nrn*.,,L - io NO -)wi )..>A (W(.). W(.)) . (6.14)

Now, since Nn)i C, ,then we also have the joint

convergence

/ (6.15)

Now consider the mapping o(x,y,t) =(x*,,y) and apply the

continuous mapping theorem to obtain

T'
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SN . N (n) _______n.

( -9 /Nnj n) . c(W'( :) , - W(6.16)

and, again applying the continuous mapping theorem to

I*(X.)x +y
we obtain

SN~. - uN(n.) + iN(n.) n . ()

or S no ~

so that indeed Yi' -> on D09,)

6.2 Zero Drift

In the zero drift case + - - 0 ,so that from 6.10

I it follows that

IC(nt) - ZN(nt) + Rn (t) (6.17)

and, using Th. 4.1 in Billingsley (9)

COOn _> W(S.) on 00-

Hence, if AeS . the sigma field generated by the open sets relative to

1 the D(0,..) metric,

~P[C~nE) £A] - P [W(S. £A] .0 as n.-

Thus we have the large-n approximation

P C~n)rA] zP [W(O.) CA]

Ir
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6.3 Non-Zero Drift

For non-zero drift Eq. (6.10) is

C(nt) - Z + + u2) N(nt) + R~t

I 
so that 

if

1C*(nt) =C(flt) (LI +12) N ~nt)

I then

C*(n-)-> W(s-) on D[O,=)

m Thus we see that in this case the centering function is random.

1 6.4 Asymptotic Behavior of Range

We can obtain the asymptotic distribution of the range from the

corresponding result for Brownian motion as follows: Consider the

I continuous mapping from D[0,-) into R given by

f(C(nt)) = (Max C(nu) - Min C(nu))
-1 \o<u<t o<u<t /

Then by the continuous mapping theorem, for R(nt), the range ofC(nt)

R(nt) -> R(Bt) ,

Ithe range of Browian motion.
as: W. Feller [21] derived the density of the range of Brownian motion

I f(t,r) - 8 ( 1 k- k2.(I

I
I
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where *(x) is the standard normal density function. Hence the

asyptoicdistribution of R(t) has a density given by

k-1 (,kr)

f -zf

~k I
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I CHAPTER VII

I ISUMMARY AND CONCLUSIONS

7.1 Summary

l In this investigation we considered several problems connected with

I Markovian storage models in continuous time.. We proceeded by con-

sidering three different variations of the model. These were the

doubly-infinite dam without top or bottom, the semi-infinite dam in

both its topless and bottomless versions, and the finite dam with both

m a top and a bottom. In each case the process which we examined was

the bivariate Markov process (Xt, Ct) in which Xt was a Markov chain

with finite state space representing the net input rate, and Ct was

I the integral of Xt , and represented the dam contents. We maintained

as much generality as possible throughout, but restricted overselves to

particular cases whenever necessary. The most general formulation of

the model was when the Markov chain Xt was defined an an arbitrary

I n-dimensional state space with an arbitrary yenerator matrix. We

often restricted the discussion to the two-state case in which the

Markov chain was defined on states vi > 0 and P2 < 0 and the holding

times in the states were exponential with parameters A and p . On

occasion we restricted ourselves still further to the symmetric case

jin which Ap and Pl v2

In the derivations, we did not follow the formal definition-theorem

style of presentation, but rather chose to present the derivations and

results In a more natural flow. Since with this style of presentation

it is not as easy to locate individual results, we now present the

j specific results derived in each chapter, as an aid to the reader.

94
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7.2 Conclusions

I Chapter III

In this chapter we derived several moment functions for the

IMarkov chain process X, and the contents processC

Mi General Case - tarkov chain:

IExt - { ii(t)A

I Var = t U(u~1,j )Wi (t)Wj(t)

ICovfXtl.Xt+S] Pi j~ ~ -~t ii(t) nits

When Xtis stationary,
m e ks

Corr[X ,X t] : Cke
k=2

where t~. , 1 Tl 1 L

0 $j

and tk* k, k z 2,. ..,m are the normalized right and left eigen-

vectors of the generator matrix, with elgenvalues 0 k The asymptotic

behavior of P5 sis governed by the largest non-zero elgenvalue

[ (ii) General Case - Contents process:

[EC t - iit
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jIf Ah(t) f X(u)du, an increment of the C t process

th

of length h centered at t, then

IE(4~2(M) E2 E tr [e hh i k=2 kili ekh-1

I + h2j~~

VrAm)-2 Ek ki e e~k ekh - 1] 1lj~

k=v 62)a~~h1 z [I + e -2e d.r

II k=2 e

Ext~ 2e hx~* ePl~

2I EX F, 8 -1uvv

Th moetfucirsae

I ~ ~~~~EXt2. - (+p)[(p+,X 2)2+Xa 1 i))]

[
[a AXP-(I4)

E- -t~ _ _ _ _ _ _ _ _ _ _ _ _2 
X ( P - U 2 2 e-_A P_
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l Cov[Xt'Xt+s] pX(x+p).2 (pl- 2) 
2e

-(X+p)s
Corr[XtXt+s] = e

(iv) Two-State Case - Contents process

I ECt =(p+)-'(pl+XU2)t~-(X+p)t

Var Ct--2(P+.X)'4px(ul-p2) 2 [e + (X+p)t-lJ

Corr[Aht)A(t+h)] =

h'2 [(,x+p)h-l+e "( +p

In this case the correlation function is free of the states.

Chapter IV

In this chapter we studied the range of the contents process

for the doubly infinite dam.

() General Case

We derived the Laplace transform with respect to time of a

form of the joint distribution of the maximum and minimum variables.

If Ms = Sup{Cu , 0 <_ u < T, T - exp (s)}

ms = Inf{Cu , 0 < u < T, T - exp (s))

and

* t(x,s) = 1-P[Ms <a - x, ms  -xIXo = wi]

Ithen

t I *(xs) = exp[-DO1 (Q-sI)x] *(os)



I

where

Ii(a) 1, ui > 0

*,(O) 1 ,i < 0

(ii) Two-State Case

The distribution of Ms  is given by

-By

i ' i > 0
4-'1s >Yui I + s -ep -ey

• , u < 0

where

A + [AZ S -D__

where
A. P+ _ + I +___s

IJ2 V I

Hence if the initial rate is positive, the maximum to time T is

exponentially distributed. If the initial rate is negative, the

maximum has a truncated exponential distribution with a mass at 0 of
; elul-S

size

If R s a s - Ms  the range to tme T ,we found that when

X t  is stationary,

ERs =1-1 (p+X+s-ej 1 )

Ii+

Lift--
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where 81 e above ande1=e-A.

(iii) Symmetric Case

For the symmetric case in which l = b, U2 = -b, and X = p = a,

I we found for the range to time t, say Rt ,that

ER [F(- T', , -2at 1 [ Fb e , /3 \ 1I t a t)~/ j aL ~ .2t 1

where F(s,,x) is the confluent hypergeometric series defined by

F (a,,X) = [ j
Ij=O j j!

e( (+l)... (a+j-l) for j-l,2,...

1 3=I for j=O

Using an asymptotic expansion of the Laplace transform we found

I the asymptotic behavior of the range as

ba a 3 ( /2)

so that in particular a large-t value is

M (t) -- 4t

We did an exact calculation of ERt for 0 < t < 10 in the

case a = b = 1 and found that the Hurst phenomenon was evident in

- the approximate range 0 < t < 2 . If a, b are chosen so that

b = ah , the asymptotic behavior is not changed. In this case, -choosing1.
a to be small extends the Hurst behavior to longer periods of time,

I while at the same time it increases the correlation between increments.

I.
I I.

( I
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In order to explain the Hurst phenomenon with this model for Hurst's

I longest series of about 2000 years requires a correlation between

adjacent yearly increments of .99865, which is unrealistically high.

m For the shorter time period of 20 years, the required correlation drops

to a more acceptable value of .87720.

Chapter V

I In this chapter we introduced the principles of invariance

developed by Chandrasekhar and Bellman in physical models to the study

of storage models. The relevance of this chapter is in the power of

these techniques to provide direct solutions to first passage problems

in a simplified manner over classical techniques.

m (i) Semi-Infinite Topless Dam

General Case

We derived Laplace transform equations for the distribution

of the first return to zero, given an exit rate pi >0 and return rate

ij < 0.

Two-State Case

In this case the first return time to zero corresponds to the

I mwet period. We solved the general system of Laplace transform equations

explicitly to obtain the Laplace transform of the wet period, T , as

s = y2(2p)-'[A + (A
2  - 4x p -1 l") 1

I -I -I

where A = s(P1-P1 1) + PU21- XV1

from which we obtained

i if m< 0I PCT<-] ppu

" - 2 if m = 0

By differentiating Os , we obtained (for m < 0).

w
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ET=M p+ A

-1z-')E T  (3p14' -AUI -1 )ET
Var T = m(p+x)

where m is the drift, i.e., m EXt for Xt  stationary.

We then used a renewal argument to obtain the limiting probability

of emptiness, Pe as

= m (for m < 0)Pe P2

- I Symmetric Case

I In the symmetric case we were able to invert the Laplace

transform to obtain the density of the wet period as

T fTx F T 3, ..2ax)

I where F is again the confluent hypergeometric function.

(ii) Semi-Infinite Bottomless Dam

In this case we derived the Laplace transform of the time

J between overflows as

Ss = ui(2x) -[A - (A2+4xpU- ")1/2]

where A = s(ul- 1 2- ) - - P142

The density of the time between overflows is the same as the density of

I the wet period for the topless dam.

We derived the limiting probability of overflow, Pf , as

I Pf =m/14 •

[
'I[

Ii _ _ _
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(iii) Conditions for Recurrence

We derived necessary and sufficient conditions for recurrence

of the Ct  process as follows:

I Topless Dam: C is recurrent iff m = EX < 0 . It is positivet
recurrent if m < 0 and null recurrent if m 0.

Bottomless Dam: Ct  is recurrent iff m > 0. It is positive

recurrent if m > 0 and null recurrent if m 0.

(iv) Finite Dam

General Case

We derived an initial-value differential equation for the

Laplace transform of the wet period.

I Two-State Case

We derived explicitly the Laplace transform of the wet period

l for a dam of height a as

ela e2a91e + Ce2e

O(a,s) -=l +C?

(as= 21[eela + Ce02a ]

where -1
(x+s)e1-pp2 " A

C = (xse"P21

(X+S)e2-PUZ2 -1

el, 2 = A + [A2+pXp 1
" -112 -1 and

]L2 " 1 (p+s)-Pl1 (X+s)

2

and we obtained the moment of T as

I
I-

m ____
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-r.)i .i . I- -1 + -11)

ET = (Xi1 +Pu2 Ul-112 + X I2 1 (x+p)ej

and the limiting probability of overflow as

I ~e A(P-A[(+)e (P' )a] ]"
Pe = X-) (;k+p)(pe -)

Chapter VI

l .In this chapter we established weak convergence ia D00,-) of

the unrestricted contents process Ct  on two states. The basic results

J which we obtained involved weak convergence to Brownian motion of the

process of C(nt) . We established that for the zero drift case,

I C--Qn =)>w(.) on D[o,-), where

2 2. + X2U

B = p(X+p)

and W(.) represents Wiener measure.

Using this we were able to conclude that the asymptotic distribu-

tion of the range has density

fR(t,r) - 8 (l)k-lk kr
Sk=la

7.3 Recommendations for Further Study

One possible line of further research would be the extension of

jthe results derived for the two-state case to three or more states.
This would require a clever choice of a generator matrix which would

give sufficient generality and yet have enough structure to make the

calculations manageable. One possibility which we would recommend for

further analyses is the generator matrix

II=

[
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Q = p(ln- I) , p > 0

which has the property that w is the stationary distribution and the

autocorrelation function is

Corr(X t,Xt+s  ep

Another possible line of research is the extension of the technique

of invariance to obtain further results in storage theory. These

techniques have been highly developed in the physical fields. What we

g have presented here is but the briefest introduction to their use in

storage theory. Undoubtedly many other results must be obtainable

through sufficiently clever applications of these principles.

I
I
I
I

I

[
Ii
[

t !
I .-- -. -".
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